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Resumo 

O vírus sincicial respiratório, a causa mais comum de bronquiolite, é o principal 

responsável pela hospitalização infantil em países desenvolvidos, sendo responsável por 

substancial parte da mortalidade e morbidade nos países em desenvolvimento. Estima-se que 

aproximadamente 80% das crianças com menos de um ano já foram infectadas por alguma 

estirpe do vírus e que aos 2 anos virtualmente todas as crianças já foram infectadas. 

Entretanto, a busca por uma vacina segura e eficaz ainda não foi encontrada. A melhor opção 

até o momento é um medicamento passivo com duração de um mês e com seu preço 

demasiadamente elevado, motivo pelo qual apenas os pacientes mais vulneráveis (com algum 

fator de risco: idade inferior a 12 semanas, prematuridade, doença cardiopulmonar subjacente 

ou imunodeficiência) tem sido protegidos pelo medicamento no SUS. Por causa de benefício 

de curto prazo e custos elevados, é muito importante compreender os padrões desta doença 

para auxiliar a tomada de decisões e diminuição dos gastos públicos. Nesse sentido, o a 

principal motivação para esta pesquisa é a modelagem de dados de hospitalização por 

bronquiolite considerando suas variações ao longo do tempo e particularidades de acordo com 

cada região no estado do Paraná, já que a dinâmica do vírus sincicial respiratório varia no 

espaço de acordo com condições ambientais e climatológicas. Os dados utilizados são o 

número de crianças de até um ano hospitalizadas por bronquiolite no período de janeiro de 

2002 a dezembro de 2012. Tratam-se de dados de contagem, pois tais dados trazem a 

possibilidade de obtenção de estimativas mais atualizadas, pois o cálculo de taxas necessita do 

número de nascidos vivos, cuja disponibilização das estimativas pelos órgãos competentes 

demoram bastante. Assim, os modelos selecionados nesta pesquisa foram baseados naqueles 

que têm uma distribuição adequada para dados de contagem, modelos flexíveis e que permite 

a inserção de variáveis explicativas. Alguns modelos disponíveis na literatura tais como o 

modelo de Poisson, Binomial Negativo e autorregressivo condicional de Poisson foram 

abordados. Foi verificado que para os dados epidemiológicos analisados, deve-se ter cautela 

com modelos clássicos de Poisson e Binomial Negativo, que embora tenham sido utilizados 

com recorrência na literatura, apresentaram desempenho muito aquém do autorregressivo 

condicional de Poisson. Com o modelo autorregressivo condicional de Poisson construído foi 

possível identificar tanto período sazonal para cada regional de saúde quanto as regionais em 

que a doença/vírus tem sido mais recorrente. Assim, esta pesquisa apresentou a indicação de 

modelos adequados para séries temporais de contagens, de fácil implementação e, 

considerando a escassez de trabalhos referentes à sazonalidade do vírus sincicial respiratório, 

mostra resultados iminentes para a tomada de decisões referente à bronquiolite.   

 

 

 

 

 

 



 
 

 

Abstract 

Respiratory syncytial virus, the most common cause of bronchiolitis, is primarily responsible 

for child hospitalization in developed countries, accounting for a substantial part of morbidity 

and mortality in developing countries. It is estimated that approximately 80% of infants 

younger than one year old have been infected by some virus strain and virtually all children of 

2 years old have been infected. However, the search for a safe and effective vaccine has not 

been found yet. The best option so far is a passive and very expensive drug, with only one 

month of effect. Because of that only the most vulnerable patients (with some risk factor: the 

age of 12 weeks, prematurity, underlying cardiopulmonary disease or immunodeficiency) 

have the right to receive medicine by the SUS (public health system). Due to the short-time 

benefits and high costs, it is very important to understand the patterns of this disease to aid the 

public decisions and cost reduction. In this sense, the main motivation for this research is to 

model the bronchiolitis hospitalization data considering its variations over time and 

particularities according to each region in the state of Paraná, since the dynamics of 

respiratory syncytial virus varies in space according environmental and clime conditions. The 

data used are the number of children up to one year old who were hospitalized for 

bronchiolitis from January 2002 to December 2012. Working with count data provides the 

possibility of obtaining estimates more updated. The calculus of rates needs the number of 

alive births, whose disclosure of estimates by the competent agency has a long delay. Thus, 

the selected models were those with an appropriate distribution for count data, flexible and 

that allows insertion of explanatory variables. Some models available in the literature such as 

the model of Poisson, Negative Binomial and Poisson autoregressive conditional were 

discussed. Poisson and Negative Binomial models have been used in the literature with 

recurrence, but they presented performance far weak in comparison to the autoregressive 

conditional Poisson model.  From the conditional autoregressive Poisson model, it was 

possible to identify both seasonal period for each health division as well as where the 

disease/virus has been more incident. Thus, this research presents suitable models for time 

series counts, easy to implement, and considering the lack of work on the seasonality of 

respiratory syncytial virus, shows imminent results for decision-making related to 

bronchiolitis.  
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Capítulo 1 

Introduction 

 

 

In epidemiological researches and ecological studies, usually we arrive at an 

impasse in deciding if we should work with counts or rates of deaths, hospitalizations, or any 

occurrence that is being investigated.  

Working with rates is more adequate for analytical studies because it allows 

the comparison between groups.  However, sometimes working with counts can be 

advantageous, because we do not need to wait for information of the population becoming 

available, or to use predicted estimates that can be not very accurate or precise. 

In this sense, the purpose of this study was to select models that have an 

appropriate distribution for count data, are flexible that allow the inclusion of explanatory 

variables. Some are classical models already used in the literature as the Poisson and negative 

binomial regression models and others, specifically, the conditional Poisson autoregressive 

(ACP) model, although it is not so known, it has been well quoted to model count time series. 

We also aim to take into account an important problem in Epidemiology related to count data 

of bronchiolitis hospitalizations that occur mainly due to viral infection (VSR). A high-cost 

medicine for this disease has been included in the public health system that has effect of only 

30 days. Thus, there is an immediate need of knowledge of the seasonal period of this 

disease/virus, which is different from place to place. 

Thus, the main models for count data time series, methodological aspects and 

comparison among some of the models are presented in Chapter 2, as well as the analysis of 

bronchiolitis hospitalizations for a health center in Parana State. In Chapter 3, the 

bronchiolitis problem is discussed and the approach from count time series presented in 

Chapter 2 was extended to 22 health divisions. Besides the temporal analysis, the spatial 

representation was also made to aid identifying which health division may receive more 

attention in certain months of the year. In that way the public policy agents could make better 

decisions, optimizing the medicine administration and cost reduction. 

 .  
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Capítulo 2 

Time series analysis of count data with an application to the 

bronchiolitis hospitalization 

 

 

2.1 Introduction 

 

Count dependent series appear in many and diverse scientific areas where a 

number of events per period are observed from time to time, for example in financial 

applications, medical field, environmental problems, among others.  By analyzing the count 

data along with independent variables the starting point typically involves the use of Poisson 

regression, but for count data that are registered in the shape of a time series, the assumption 

about the independence of observations becomes a problem.  

Several general methods have been presented in the literature to deal with time 

series of count data, such as: Linear Models, Generalized Linear Models (GLM) (KEDEM 

and FOKIANOS, 2005), Generalized Autoregressive Moving Average (GARMA) models, 

Generalized Additive Models for Location Scale and Shape (GAMLSS), Integer-valued 

Autoregressive Moving Average (INARMA) (MCKENZIE, 2003), Discrete Autoregressive 

Moving Average (DARMA) and Autoregressive Conditional Heteroskedastic (ARCH) 

(BOLLERSLEV,1986).  

The distribution of counts is discrete, not continuous, and is limited to non-

negative values. In this case, the Gaussian linear regression is not the proper choice because 

one of the major assumptions of linear models such as linear regression and analysis of 

variance is that the residual errors follow a normal distribution and the time dependence is not 

modeled by these models.  

Nelder and Wedderburn (1972) developed a generalization of the linear regression 

model, known as generalized linear models (GLM) as a way of unifying various other 

statistical models. So that it can be used for any distribution of the exponential family in 

addition to the normal distribution (HARDIN and HILBE, 2007), including Poisson and 

Negative Binomial models. The basic idea is to open up options for the distribution of the 

response variable, allowing it to belong to the exponential family of distributions and to give 

greater flexibility to the functional relationship between the mean of the response variable and 
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the linear predictor η.  Examples of these types of regression are found in the literature 

(CONSTANTIN DE MAGNY et al., 2008; MASAHIRO et al., 2008; HUQ et al., 2005; 

FERNANDEZ et al., 2009; VAN DER BERG et al., 2008; EMCH et al., 2008). However, 

these models do not take into consideration the serial correlation. 

There are other alternative classes of regression models for count time series; one 

of the best known models is called Integer-valued Autoregressive Moving Average 

(INARMA), specifying that ty  is a sum of integers and this value is determined by the past 

1ty    . Appropriate distributional assumptions lead to a count marginal distribution of ty   such 

as Negative Binominal or Poisson. This kind of model is a generalization of the AR model. 

The integer valued AR and ARMA models (INAR and INARMA) were proposed by Al-Osh 

and Alzaid (1987) and  McKenzie (2003). 

Discrete Autoregressive Moving Average models (DARMA) have properties 

similar to the ARMA processes, largely found in traditional analysis of time series, and fit 

non-negative and integer data. They are probabilistic mixtures of i.i.d discrete random 

variables with properly selected marginal distributions. The major disadvantage associated 

with these models appears to be the difficulty of estimating the parameters. An application 

can be found in Chang, Kavvas and Delleur (1984). 

However, if the assumption of independence between events at successive time 

intervals (that is, the occurrence of an event at any given time does not influence the 

subsequent events) is violated, or if any other violation occurs, using the model should be 

called into question. So we must check for appropriate methodologies in the presence of serial 

correlation. Autocorrelation can be tested with a straightforward likelihood test as the Durbin–

Watson (DW) or a more general test such as the Breusch-Godfrey (BG) in time series is 

common to use the Ljung–Box test, instead of testing randomness at each distinct lag, it tests 

the "overall" randomness based on a number of lags, and is therefore a portmanteau test. In 

such cases, where the serial correlation is found, the option is to manage this correlation, to 

avoid incorrect conclusions from other tests, or sub-optimal estimates of model parameters. 

Cochrane–Orcutt estimation is a procedure, which adjusts a linear model for serial 

correlation in the error term. In the case the errors can be represented by a stationary first 

order of a stationary auto-regressive process, the structure is              | |   , with 

the errors te  being white noise, and then the Cochrane–Orcutt procedure can be used to 

transform the model by taking a quasi-difference:                          
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           In this specification, the error terms are white noise, so statistical inference is 

valid. Then the sum of squared residuals (the sum of squared estimates of   
  is minimized 

with respect to (α,β), conditional on ρ). 

On the other hand, Zeger (1988) successfully modeled serially correlated count 

data with explanatory variables by assuming that the observed counts were conditionally 

independent and Poisson distributed given a latent process which generates over-dispersion 

and the serial correlation.  He assumed that this process was stationary and autoregressive. 

Zeger (1988) used generalized estimating equation, used to estimate the parameters of a GLM 

with a possible unknown correlation structure between outcomes, and illustrated his method 

on a polio incidence series.  

Similarly, Heinen (2003) proposed the Autoregressive Conditional Poisson model 

(ACP) that accommodates issues of discreteness, over-dispersion (variance greater than the 

mean) and autocorrelation. The ACP model was proposed in close analogy to the 

Autoregressive Conditional Duration model (ACD) of Engle and Russel (1998) and the 

GARCH model of Bollerslev (1986), which accommodates over-dispersion and the serial 

correlation. 

The purpose of this study was to select models that have an appropriate 

distribution for count data, are flexible and allow the inclusion of explanatory variables. Some 

are classical models already used in the literature as the Poisson and negative binomial 

regression models and others, specifically, the conditional Poisson autoregressive (ACP) 

model, although not so well known, it has been well quoted to model count time series. 

(TSAY, 2015). 

The paper is divided into 6 sections. In section 2 we briefly describe the models 

used in comparison also included a section that explain the problems associated with the 

application of these models to count data. Section 3 is shown a brief presentation of what are 

the measures used to compare the models. We describe in section 4 the data used in the 

application of the two model classes. Section 5 contains the time series analysis of the 

bronchiolitis count cases and Section 6 contains a discussion. 
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2.2 Poisson model 

 

Observations of dependent counts can in many cases be modeled successfully 

through the Poisson distribution. Let { }, 1,..,tY t n , denote a time series of counts taking 

nonnegative integers values, where tY  is the response process. According to the conditional 

law, { }tY  is specified by assuming that the conditional density of the response given the past is 

Poisson with mean t   

1( ; | )
!

i iy

i i t

i

e
f y F

y

 




  with              

where   is the mean, ( )V Y  is the variance and the dispersion parameter is given by 1  .     

The Poisson distribution belong to the exponential family and its systematic component is  

1( ) ( ) log( ) ' ,t t t t t tg          Z  

where 
1 2( , ,..., )T

n     is the linear predictor, (.)g  is the link function, which in this case is 

canonical. 
1( ,..., ) 't t tpz zZ  is a vector that represents the explanatory variables and 

1( ,..., )t

t    the vector of regression parameters, usually estimated by the maximum 

likelihood method. With 1,   the scaled deviance and the deviance are equals. 

In the Poisson model, the mean and variance are equal. However in practice the 

variance of the errors could be larger than the mean (although it can also be smaller). When 

the variance is larger than the mean, two other extensions of the Poisson model are more 

suitable. In the over-dispersed Poisson model, an extra parameter is included to estimate how 

much larger the variance is than the mean. This estimated parameter is then used to correct the 

effects of the larger variance. The negative binomial distribution can be used as an alternative 

to the Poisson distribution. 

 

2.3 Negative Binomial model  

 

The negative binomial distribution is a form of the Poisson distribution in which 

the distribution’s parameter is itself considered a random variable. The variation of this 
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parameter can account for the variance of the data that is higher than the mean. In order to 

deal appropriately with over-dispersed Poisson count data, the link used for the negative 

binomial needs to be the same as that of the Poisson model, namely, the log link (HILBE, 

2011). 

It is especially useful for discrete data over time. Since the negative binomial 

distribution has one more parameter than the Poisson, the second parameter can be used to 

adjust the variance independently of the mean. the variance is given by 

2

( ) .t
t tV Y





   

 The density function written as 

( )
( ; , ) 1,2...,

( 1) ( )

ty

i t
t t

i t t

y
f y y

y



  
 

    

    
    
       

 

is a distribution of exponential family, and the random component vector Y  and the 

systematic component is given by 

1

( ) ,
p

T

i t t i

t

g z z   


    

where 
1 2( , ,..., )T

n     is the linear predictor, (.)g  is the link function, which in this case is 

canonical. 
1( ,..., ) 't t tpz zZ  is the vector that represents the explanatory variables and 

1( ,..., )t

t    the vector of regression parameters, usually estimated by the maximum 

likelihood method. 

To estimate the parameters, the method of quasi maximum likelihood on which the log 

likelihood function is as follows 

1

( )
( ; , ) log log( ) ( ) log( ) log( )

( 1) ( )

N
t

t t t t t t

t t

y
l y y y

y


       



   
       

    
  

is used. 
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2.4 Autoregressive Conditional Poisson 

Most time series involving count data are over-dispersed with the variance greater than 

the mean (JUNG et al, 2006). Although, negative binomial model could be used, these data 

also often show serial correlation. By taking the counts to be a Poisson distribution and 

modeling as an autoregressive process where the average is conditional on previous 

observations, the over-dispersion and serial correlation can be accommodated by the ACP 

model. 

The conditioned models are within the generalized linear time series models, based 

on partial likelihood inference. Where the most common choice is the log-linear model, where 

tY  is assumed as conditionally Poisson distributed with mean t . The most current models are 

based on log t , the canonical link parameter on past values of the response and/or covariates 

(FOKIANOS and KEDEM, 2004).  

That is the idea of the ACP model to deal with count data exhibiting autoregressive 

behavior. This ACP model falls in the category of observation-driven models, where the 

observations are commonly assumed to follow a Poisson distribution, and furthermore, lagged 

values of the observed variable can also be incorporated directly into the mean function.   

In a first step it presupposes that the conditionality to the past is assumed to be 

captured by the conditional mean as in the conditional intensity on past durations, ACD 

model of Engle and Russell (1998).  A fully parametric approach is taken and a marginal 

distribution for the counts is specified, this enables to attain improved inference on 

coefficients of exogenous regressors relative to static Poisson regression, which is the main 

concern of the existing literature, while modeling the serial correlation in a flexible way. 

Considering 1,..., ny y  a time series of counts, and 1tY   denote the information 

available on the series up to and including time 1t  . In the simplest model (no explanatory 

variables), the counts are generated by a Poisson distribution (HEINEN, 2003):  

1| ~ ( )t t ty Y Poisson  , 

with an autoregressive conditional intensity. The ACP mean can be written by 
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1

1 1

[ | ]
p q

t t t j t j j t j

j j

E y Y y      

 

      

for positive     and  representing the autoregressive, moving-average and constant terms, 

respectively. Furthermore p describes the number of lags on the observed variable that are 

incorporated into the model and q  indicates the lags of previous means. Considering that 

∑    
         
     < 1, the ACP(p,q) is stationary and its unconditional mean is 

    |        
 

   ∑     
        

      
   

Thus, as long as the sum of the autoregressive coefficients is less than 1, the model is 

stationary and the expression for its mean is identical to the mean of an ARMA process. In the 

case of ARMA(1,1) structure, most commonly used in the GARCH and the ACD models, the 

mean equation is then given as: 

1 1 1 1 1[ | ]t t t t tE y Y N              (1) 

while the unconditional variance of the ACP(1,1) model, when the conditional mean is given 

by (1) is equal to 

         
             

  

          
         (2) 

From (2) we can see that unconditionally the ACP exhibits over-dispersion, even 

though it uses an equidispersed conditional distribution. Since α1 + β1 is taken to be less than 

1. The model is over-dispersed, as long as      and the amount of over-dispersion is an 

increasing function of    and also, to a lesser extent, of   . The following proposition 

establishes an expression for the autocorrelation function of the ACP. 

 It is of interest in this model to test if there is significant autocorrelation. This 

corresponds to testing the joint hypothesis that         in the ACP(1,1) model. The 

unconditional autocorrelation of the ACP(1,1) model is given by   
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and the derivation is available in Heinen (2003). This correlation is positive for all s.  

 

Maximum likelihood estimate 

One of the advantages of ACP model is that the parameters can be easily 

estimated using the maximum likelihood. Considering   a three dimensional vector of 

unknown parameters, it is evident that the parameters that need to be estimated are 

( , , ) '     from the expression (1). Then the conditional likelihood function for   and the 

starting value 0 in terms of the observations 1,..., nY Y  is given by 

1

1 1

exp( ( )) ( )
( ) ( | ) .

!

tyn n
t t

t t

t t t

L p y Y
y

   
 

 


    

Here we have used the Poisson assumption,                     and 

0( ).t t    Since the distribution for 1|t ty Y   is Poisson, the log likelihood, which is used to 

estimate  , can be expressed as  

1

( ) ( ( ( )) ( )),
n

t t t

t

l y ln    


   

where t  is written in terms of 1ty   and 1t  in the actual implementation of the model 

estimation, for a given series of 'ty s , the process has to be ―kick-started‖ with initial values 

for 0  and 0y . This can be done by setting 0  and 0y  equal to the mean of all the 

observations, as is done in the applications by Jung et al. (2006). 

The log-likelihood for a given    can be incorporated into an optimization routine to find the 

estimate for   that maximizes this function. This maximum likelihood estimate (MLE) for   

can then be used to compute the MLE for the conditional means t  using the mean equation. 

2.5  Comparison of Predictive Performance 

In the comparison of the probabilistic forecasting, the goal is to choose the model 

that maximizes the sharpness of the predictive distributions subject to calibration 

(GNEITING, BALABDAOUI and RAFTERY, 2007; CZADO, GNEITING and HELD, 
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2009). Calibration is a joint property of the predictive distributions and the data related to the 

statistical consistency between the probabilistic forecasts and the observations. Sharpness is a 

property of the forecasts related to the concentration of the predictive distributions. 

For continuous variables, several ways of assessment of calibration and sharpness 

for probabilistic forecasts have been proposed in the literature (GNEITING et al., 2007). In 

Czado, Gneiting and Held (2009), some proposals were introduced to the case of count data. 

2.3.1 Calibration 

A tool for assessing the probabilistic calibration of the predictive distribution 

(GNEITING et al. 2007) is the probability integral transform (PIT).  Using the residuals of an 

estimated model through the PIT we can build a histogram to see the goodness-of-fit, which 

will follow a uniform distribution if the predictive distribution is correct.  

The basic result on which density forecast evaluations are built dates back to Rosenblatt 

(1952) and is given by the PIT 

( ) .
ty

tz p u du


   

Rosenblatt (1952) has shown that z  should be with identically and independently 

distributed as (0,1)U  if y  has any continuous distribution P  and continuous density 

function p . For a stochastic process ,    1 ,{ },ty t n  ,    .tp denotes the forecasted or expected 

conditional density of the realization ty  where conditioning is with respect to the past of ty , 

and ( )t tP y  denotes the respective forecasted or expected conditional distribution. Thus, with 

PIT, the transformed series ,    1 ,{ },tz t n   must be a sequence of independent and 

uniformly distributed  0,1U  random variables if the forecasted distributions 

,    1, ,{ ( ) }t tP y t n    and the true distributions ,    1, ,{ ( ) }t tF y t n   coincide (RAUNIG, 

2003). 

The focus is the PIT of the residuals of the model, by evaluating the   histograms 

and autocorrelograms of the PIT.  
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Simple tests such as Kolmogorov-Smirnov (KS) could identify if the PIT is 

distributed as (0,1)U , however they require care in interpretation and may not be valuable in 

practical applications because the tests provide no guidance of the reason of the uniformity 

violation if a rejection occurs (DIEBOLD, GUNTHER, and TAY, 1998; JOLLIFFE, 2007; 

CZADO, GNEITING and  HELD, 2009) In this context, a simple histogram and ACF with its 

confidence intervals is the most informative method to illustrate the unconditional uniformity 

of    (GENÇAY and SELÇUK, 1998; CZADO, GNEITING and HELD, 2009) 

Some deviations from the uniformity gives some indicative for forecast and model 

improvement. U-shaped histograms indicates under dispersion of the predictive distribution 

while inverse-U shaped histograms point at over-dispersion (CZADO, GNEITING and  

HELD, 2009). On the other hand, for count data, as the predictive distribution is discrete and 

not continuous, some derivations of the usual PIT have been proposed.   

A nonrandomized uniform version of the PIT histogram was proposed by Czado, 

Gneiting and Held (2009), which replaces a randomized PIT by its conditional CDF given the 

observed count, where the calibration can be assessed by aggregating over a relevant set of n  

predictions and comparing the mean PIT. Thus, if the density fit is adequate, this sequence 

will be uniformly distributed and will have no-autocorrelation left neither in level nor when 

raised to integer powers. Hence, graphical methods such as correlograms on the basis of the 

usual Bartlett confidence intervals, histograms and quantile-quantile (QQ) plots are usefull.  

This review by PIT is important and this condition need to be evaluated, but 

Gneiting et al. (2007) suggests that it is necessary to be provide complete clarity on what is 

the best model in this way creates the simultaneous assessment of calibration and sharpness.  

To assess the sharpness, some possibilities are presented in the next section. 

2.3.2 Sharpness 

As sharpness refers to the concentration of the predictive distributions, for 

continuous predictive distributions we can think in terms of prediction intervals, where the 

shorter the intervals, the sharper and the better, subject to calibration. Although sharpness 

continues to be critical for count data, Czado, Gneiting and  Held (2009) suggested addressing 

sharpness indirectly, via proper scoring rules.  
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Supposing a single numerical score based on the predictive distribution tP   and 

the observation ty  is denoted by ( , )t ts P y , and  Q is the best judgment of the predictive 

distribution from a forecaster. Scores are said to be strictly proper when  s(Q, Q) ≤ s(P, Q) for 

all P and Q. Propriety ensures that both calibration and sharpness are being addressed and is 

an essential property of a honest and coherent scoring rule to find  predictions (Bröcker and 

Smith, 2007; Gneiting and Raftery, 2007; Czado, Gneiting and  Held, 2009).  

 A number of possible proper scoring rules are given in Table 2.1. The mean score 

for each corresponding model is given by
1

( , ) /
n

t tt
s P y n

 . The model with the lowest score is 

preferable. Each of the different proper scoring rules captures different characteristics of the 

predictive distribution and its distance to the observed data (function scoring). 

 

Table 2.1-Definitions of proper scoring rules ( , )t ts P y  (CZADO et al. 2009; CHRISTOU and 

FOKIANOS 2015) 

 

 

The scores shown in Table 2.1 are the unconditional meaning that they have calculated on 

individual scores independently of predictive distributions. The Logarithmic Score,  

 ,logs P t , depends on the predictive distribution P  only through the probability mass tp  at 

the observed count. The Quadratic and Spherical Scores, essentially, measures the mean 

squared/ spherical difference between a set of predictions and the set of actual outcomes. The 

ranked probability score (RPS) is a measure of how good predictions are expressed as 

probability distributions are in correspondence with the results observed, with the lowest 
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scores are better, it is a suitable test for comparison between models (GNEITING and 

RAFTERY, 2007; RIEBLER and HELD, 2009; CZADO, GNEITING, and HELD, 2009). 

Other classical measures of predictive performance could be used, such as 

absolute or squared errors, but we considered only proper scores in this research, mainly 

because the importance of propriety is stressed in the literature (GNEITING and RAFTERY, 

2007). 

2.6 Data Analyses  

The count data analyzed in this study was the number of bronchiolitis cases in 

metropolitan health center, which includes Curitiba city.  The bronchiolitis counts were 

recorded as the number of patients hospitalized for bronchiolitis on a monthly basis. The data 

provided by DATASUS (Brazilian Unified Health System database) were in the period from 

January 2002 to December 2012. Bronchiolitis is an acute inflammatory injury that is usually 

caused by a viral infection (VSR) and some populations of children (newborn preterm, 

congenital heart disease, chronic lung disease, immunocompromised, undernourished, etc.), 

are at increased risk of morbidity and mortality. The implementation for data analysis and 

model evaluation were made in the software R 3.1.2 (R Core Team, 2014) using some 

packages such as ACP.     

A plot of monthly bronchiolitis counts over time is presented in Figure 2.1. It is 

clear from the graph that the bronchiolitis cases have a strong seasonal component with 

regular outbreaks occurring almost every year. Besides seasonality, the graph may show a 

slight trend growing over time. 
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Figure 2.1 - Time series plot of monthly bronchiolitis counts in Curitiba: Jan 2001 – Dec 2012. 

 

A histogram of the bronchiolitis counts is showed in Figure 2.2. In the histogram 

we can see that the counts are highly skewed with a few large counts and high frequencies of 

small counts, thus suggesting that the data may follow a Poisson distribution. 

Table 2.2 includes the following: Count, Mean, Min, Max, Median and Variance 

of the monthly bronchiolitis counts. Although those statistics are not informative for time 

series with trend and seasonal behaviors, one can see a large difference between the mean and 

the median which again confirms the skewness in the data, one can also see the over-

dispersion since the variance of 322.52 is greater than the mean of 18.59. Once the underlying 

condition is not satisfied a negative Binomial distribution could be more appropriate. 
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Figure 2.2 - Histogram of bronchiolitis counts.  

 

Table 2.2- Count, Mean, Min, Max, Median and Variance of the monthly bronchiolitis counts. 

Count Min. Mean Median  Max Variance 

4323 0 13 22,51 145 322.52 

 

In Figure 2.3 and Figure 2.4, the box-plots of the data are showed by month and by year, 

where the seasonality and trend are evident. 
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Figure 2.3 - Box-plot of bronchiolitis counts by year . 

 

 

Figure 2.4 - Boxplot of bronchiolitis counts by month 

In most time series data, the autocorrelation shows the similarity between 

observations as a function of the time lag between them, that is a property of the data in 

question. In Figure 2.5 (top) the ACF of bronchiolitis count time series is presented and the 

ACF for the 12-lag differenced time series can be seen (bottom). 

We can see that even after the 12-lag difference, the seasonal correlation remains 

very strong, as well as a short-range correlation of lag one. 
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Figure 2.5 - ACF plots for numbers of bronchiolitis cases (top) and that with seasonality removed 

(bottom). 

 

2.7 Model results 

 

In order to compare and evaluate the time series count models, first the data were 

modeled using the Poisson and Negative Binomial models, however the serial correlation is 

ignored. 

As featured in Table 2.2, the descriptive statistics revealed the high over- 

dispersion. So it is preferable to choose the negative binomial regression that has a parameter 

to take the over-dispersion into account. McCullagh and Nelder Nelder (1989) confirmed that 

the over-dispersion is common to accommodate, if possible, it is necessary to add a parameter 

in the variance function, what do not correspond to any probability distribution. Cameron and 

Trivedi (1998), on the other hand, noted that this excess of dispersion is typical of most real 

life data and the Poisson regression can be used in such cases, since it gives consistent 

coefficients estimates for the explanatory variables. 

Due the evident seasonality, we need to deal with that in the model. One 

possibility is to insert harmonic terms in the models. Two harmonics represented by 

(2 )jcos w t   and (2 )jsin w t  for frequency /12, 1 2jw j j and   , were included to take 

into account annual and possible semi-annual (6 month) behavior. 
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In Table 2.3, the maximum likelihood estimates of the parameters are presented for the three 

models being evaluated: Poisson, Negative Binomial and ACP models. 

 

Table 2.3- Maximum likelihood estimates of the parameters of all models and the Ljung-Box statistic and AIC 

criterion. 

 

 

The Ljung-Box statistic is calculated over the Pearson residuals for the models, 

suggesting that there is remaining autocorrelation, since the statistic is significant at the 5% 

level of significance. This was confirmed by the ACF plot of residuals,  in the Figure 2.6, 

which shows that for the Poisson regression model and negative binomial model still show 

autocorrelation, and for ACP model settled all autocorrelation was assimilated. 

Parameters 

Coefficients
Poisson Negative Binomial ACP

5,7678

0,6228

0,0260

0,0105

-0,1675

0,1045

1,5140 1,5376

0,0447 0,0683

0,0117 0,0116 0,0101
0,0003 0,0005 0,0006

0,3514 -0,8906 -0,8261
0,0245 0,0447 0,0463

0,4803 0,3084 0,3453
[0.0292] 0,0413 0,0248

-0,2328 0,0423 -0,2800
[0.0306] [0.0451] 0,0281

-0,2894 -0,3005 -0,2386
0,0243 0,0420 0,0288

Cos(2πt/12)

Sen(2πt/12)

Cos(4πt/12)

Sen(4πt/12)

ω

α

β

intercept

β1
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Figure 2.6 - Autocorrelation functions plot of  Pearson residuals.(A)Poisson regression, (B) Neg. Bin.  and (C)  

ACP model. 

To analyze the model goodness of fit, some proper scores: logarithmic, square, 

spherical, medium, absolute, relative and average the comparison scores rank of probability, 

are presented in Table 2.4. 

 

Table 2.4 - fit statistics from all the models.  

 

A lower score indicates a better fit. However, the values of all statistics for the 

selected models in Table 2.2 indicate that there is very little difference in terms of the overall 

performances of the models to the bronchiolitis counts. 

Comparing the settings of all models as seen in Table 2.4, there is no obvious 

difference among models. The same is seen in Figure 2.7 where the predicted values of all 

three models are very similar to empirical data curve. 

Scores Poisson Neg. Bin ACP

Logarithmic score 3,540 3,550 3,530

Quadratic score -0,052 -0,053 -0,050

Spherical score -0,224 -0,225 -0,221

Ranked probability score 16,690 16,660 16,630
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Figure 2.7 -  Selected models adjusted to data on observed number of bronchiolitis cases and 

adjusted models Poisson, negative binomial and ACP model. 

2.8 Residual Analysis 

In Figure 2.8 the standardized residuals from the three models are presented. The 

envelope chart for the ACP is the only plot showing residuals that can be considered to follow 

a normal distribution, while for the Poisson and Negatives Binomial this assumption is not 

achieved. 

 

Figure 2.8 - Envelop plot for the residuals of (a) Poisson model (b) Negative binomial model (c) 

ACP models. 
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Figure 2.9, 2.10 and 2.11 (A) represents the time-series behavior of the fitted 

values same as in the Figure 2.7. The PIT histogram is showed in Figure 2.9, 2.10 and 2.11 

(B) and the correlograms for      ̅),       ̅ 
 ,       ̅ 

 ,       ̅ 
  are presents in Figure  

2.9, 2.10 and 2.11 (C)~(F).  

 

 

Figure 2.9 - PIT: Poisson model. 

 

Figure 2.10 -  PIT: Negative binomial. 

 

 

Figure 2.11 - PIT: ACP model. 

The distribution of data is asymmetric given the fact that the far right we 

have a lot of zeros and the left have outliers points. In Figure 2.9, 2.10 and 2.11 (b) 

the u-shape indicates under dispersion of the predictive distribution. It can be noted 
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in the ACF the autocorrelation, in the negative binomial and Poisson feature points 

outside the confidence interval, ACP however for the correlation model was 

modeled.  

2.9 Final Considerations 

The aim of this paper was to investigate models that are applicable to time 

series of count data and apply these models for cases of hospitalization for bronchiolitis 

monthly recorded in the metropolitan area of Curitiba over a period of twelve years. 

This study brought out the advantages of using models developed for time 

series counts in addition to the conventional techniques used in count data modeling, and 

demonstrated that actually these models has best characteristics for the case in this study. 

The analysis results of bronchiolitis count data presented in the session 2.1 

clearly showed that the static Poisson and negative binomial regression models were not 

suitable for data that are serially correlated. The combined model by Heinen (2003) is more 

flexible to capture the serial correlation and the over dispersion.  For better estimation of 

standard errors and log-likelihoods the ACP is more suitable to data with small amounts of 

serial correlation ACP and DACP model are easy to implement and estimate.  

Although many studies have shown relationship between viral diseases and 

external environment such as: temperature, humidity and other climatic variables, this 

relationship was not used and only the terms of the current count time data series models  

have been studied. 
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Capítulo 3 

Bronchiolitis Hospitalization in Southern Brazil from 2002 to 

2012:  An approach from count time series  

3.1 Introduction 

 

Brazil is experiencing an accelerated process of social and demographic 

changes. The access to health care has been achieved by national health programs, such as the 

immunization program of the treatment for HIV/AIDS, which has become a reference 

worldwide. With all this, life expectancy at birth of the Brazilian left mere 50 years in the 60's 

to overcome their 70 in 2020 (NASRI , 2008). 

However, there are worrisome diseases, especially those affecting young 

children that are of great importance for Epidemiological research and need to be monitored.  

Respiratory diseases, one of the main causes of infant mortality around the world, cause 4.5 

million deaths per year. Specifically, bronchiolitis is one of the most common causes of 

respiratory infections in early childhood and is caused mostly by respiratory syncytial virus 

(RSV). Infections caused by RSV has a worldwide distribution and according to the World 

Health Organization (WHO) accounts for about 60 million infections with 160,000 annual 

deaths worldwide. According to Lourenção et al. (2005) was found the presence of RSV in 

80% of children younger than 6 months old who had bronchiolitis and 25% of children who 

had pneumonia.  

There is no specific treatment for RSV, and some populations of children 

(newborn, with some congenital heart disease, chronic lung disease, immunocompromised, 

undernourished, etc.), are at increased risk of morbidity and mortality. The most effective 

measure is the administration of an antibody, anti-RSV (Palivizumab), which has neutralizing 

and inhibitory activity against RSV for a period of 30 days. Up to 5 annual doses of 

medication are indicated to be administered monthly. However, the medication is 

recommended to start one month before the seasonal peak, which is different depending on 

the region of Brazil. Once the Palivizumab has a high cost to the government, about R$ 

5,000.00 each bottle, and due its short period of immunization, it is extremely important to 

model and identify the months which the disease occurrence is more frequent (seasonal 

peaks). 
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Some investigations of bronchiolitis hospitalization rates have being initiated 

by Andrade and  Botelho (2015) from 2008 to 2010. They worked with the rate of the number 

of hospitalizations in relation to the alive birth for each region, what is usual in the literature. 

However, to compute this rate, alive birth data has to be available. As the delay of availability 

of alive birth is much longer than hospitalization counts, it would be important to analyze the 

count data to have results more up to date.  

In this sense, the aim of this research is to evaluate the count of hospitalizations 

due to bronchiolitis in the health centers of Paraná state in temporal and spatial point of views. 

To account for temporal variation, such as trends and seasonal behaviors, as well as, other 

serial correlations, appropriate time series models for count data were built. Poisson 

regression models for time series can in many cases succeed in modeling this kind of data. 

However, these models are limited because they assume that events are independent and the 

use of these models is still recurrent in the literature (FOKIANOS and KEDEM 2004). As 

pointed by Cameron and Trivedi (1998), when a count data set exhibits time dependence the 

plain Poisson regression is not adequate. Another model that has been well quoted in the 

literature is the Autoregressive Conditional Poisson (ACP) that was proposed by Heinen 

(2003) for cases of count data exhibiting autoregressive behavior. An important factor in the 

decision to use these models is that they are flexible with the inclusion of explanatory 

variables. We aim to show these two classes of models for bronchiolitis hospitalization data 

comparing their performances.  

We also aim to present the maps to aid the surveillance in detecting areas of 

high disease incidence, and give the first step in identifying disease clusters. Maps transmit 

the visual information immediately how the disease is progressing in space and time, 

improving the identification of seasonal patterns. Actually both temporal and spatial analysis 

can be useful for decision-making in public policy, optimizing the medicine administration 

and cost reduction. 

3.2 Materials and Methods 

An ecological study of monthly hospitalization due to Bronchiolitis counts in 

children younger than 1 year old was conducted from 2002 to 2012 in Parana State, Southern 

Brazil. The state has a humid subtropical climate in the Northeast, coastal plains and a 

subtropical climate in South. In 2010, the population of Paraná State was 10,512,349 of which 

714.062 (6.9%) were younger than 1 years old. The State is administratively divided into 399 

municipalities that are grouped in 22 regional health divisions (Instituto Brasileiro de 
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Geografia e Estatística. demographic sense. http://www.ibge.gov.br): 1 Paranaguá; 2 

Metropolitana; 3 Ponta Grossa; 4 Irati; 5 Guarapuava; 6 União da Vitória; 7 Pato Branco; 8 

Francisco Beltrão; 9 Foz do Iguaçu; 10 Cascavel; 11 Campo Mourão; 12 Umuarama; 13 

Cianorte; 14 Paranavaí; 15 Maringá; 16 Apucarana; 17 Londrina; 18 Cornélio Procópio; 19 

Jacarezinho; 20 Toledo; 21 Telêmaco Borba; 22 Ivaiporã. 

Thus, time series of monthly number of patients hospitalized for bronchiolitis 

for each one of the 22 health divisions were obtained from the System of Hospital 

Information of SUS (SIH-SUS) in Brazilian Unified Health System database (DATASUS - 

www.datasus.gov.br) by using the 10th revision of the International Classification of Diseases 

(ICD-10) with the code J21.  

The development of the study occurred as recommended by Resolution n. 

196/96 of the Brazilian National Health Council. The project was approved by the Ethics 

Committee in Research of State University of Maringá (Legal Report 140/2009) and the Term 

of Free and Informed Consent was not used because the data were secondary. For data 

analysis the software R 3.1.2 was used (R Core Team, 2014). 

For the time series analysis, Poisson regression and ACP models were built. As 

bronchiolitis data presented seasonal patterns, a possibility to deal with this pattern was to 

insert artificial variables in the construction of the models. This pattern was represented by    

(2 /12)jcos w t   and (2 /12)jsin w t  for frequency /12, 1jw j j  and 2 , in both Poisson 

regression model and Autoregressive Conditional Poisson (ACP) model to take into account 

annual and possible semi-annual (6 month) behavior for all 22 health divisions.  

For choosing the best model, 10 model selection score were used, each one 

indicates which model is better adjusted to represent the variability of the data. Two of them 

are classical:  mean absolute error and root mean squared error. The other eight are related to 

score functions for count model evaluation and (GNEITING and RAFTERY, 2007; CZADO 

et al, 2009): logarithmic score, quadratic score, spherical score, ranked probability score, 

Dawid-Sebastiani score, squared error score, mean absolute error score, root squared error 

score. 

As each score has specific features, we observed the frequency of the ten 

scores that were in favor of one model in relation to the other for each health division.  

Due to the spatial variability and considering that maps have long been used to 

describe geographic patterns of diseases, maps of the estimated cases from the temporal 

model were built to improve the visualization of critical regions along the months of the year. 
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In this study the data were standardized by the maximum of all the series to improve the 

visualization. 

 

3.3 Results 

From January 2002 to December 2012, 10.261 cases of bronchiolitis were 

recorded in Paraná State. The 2
nd

 health center was by far the data stream with the largest 

number of cases during the study, with a monthly average of 18.9 hospitalizations. The 22
th

 

had the fewest count, with an average of 0.35 hospitalization per month. The largest number 

of cases, 96 hospitalizations, were reported in May 2012 in the 2
nd

  health division.  

In Figure 3.1, the general distribution of the number of bronchiolitis 

hospitalizations per month can be seen in boxplot for each regional health division. The 

average of cases by month is showed in the y axis beside the health divisions number. For an 

example, in the 5
th

 health division, the mean is of 6 cases per month. 

All 22 health divisions reflected the typical seasonal patterns (Figure 1). From 

this descriptive analysis, we can see that, in general, more cases occurred between June and 

September. However some of the health divisions have peaks in other months, thus 

reinforcing the need to build a time series model suitable to each health division. 
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   Figure 3.1 - Box-plot of bronchiolitis counts by month for all 22 health centers. 

 

Figure 3.2 shows the adjusted Poisson regression and ACP models for the 22 

health divisions. We notice that the seasonal pattern is evident for most of the series.  On the 

other hand, the trend is not apparent in all the divisions, being visually noticeable only for 

some of them, such as for 2
nd

 Health division (Metrolitana), where 9 and 13 cases were 

estimated in January and June of 2000 while these estimates were 14 and 61 in 2012, 

respectively, from ACP model.  
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Figure 3.2 - Poisson (red) and ACP (gray) models adjusted to time series (black) of observed number of 

bronchiolitis cases. 

From Figure 3.2, we can see even visually that ACP model fits the variability 

of the time series better than the Poisson regression model. The residuals were also evaluated 

as described in Chapter 2 and all the serial autocorrelation were taken into account by the 

models for all health divisions. However, that did not happen for Poisson models. For most 

time series, the errors remained autocorrelated. For some health divisions, given the nature of 

series, there is a certain difficulty in reaching more consistent models such as the 21
th

 and 22
th

 

the health divisions. In appendix, part of the residual analysis can be verified. 

However in some time series there is no graphic evidence that one model is 

better than the other. For this reason, using the scores cited in the methodology can help in the 
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comparison of the models. Table 3.1 lists how many of the ten scores mentioned in section 

3.2, the ACP model is superior or worst (given the score rule) than the Poisson model. 

 

Table 3.1 Comparison between the models: Frequency of the ten evaluated scores was in favor of the ACP 

model for each health center. 

  

 

Table 3.1 shows that only a few times, some scores are in favor of the Poisson model 

and 87% of the scores are in favor of ACP model. Considering the well known classical 

RSME score, ACP model was superior to Poisson model in 100% of the the times, this is in 

agreement with Figure 3.1, where the ACP adjustment model is clearly the best. 

 

In table 3.2 the monthly average of the estimated values are presented in descending 

order by the number maximum of estimated hospitalizations by month.  

 

 

 

 

 

 

 

 

 

 

 

Regional Division Superior Worst Regional Division  Superior Worst

01 Paranaguá 10 0 12 Umuarama 9 1

02 Metropolitana 10 0 13 Cianorte 9 0

03 Ponta Grossa 10 0 14 Paranavaí 5 3

04 Irati 9 1 15 Maringá 10 0

05 Guarapuava 10 0 16 Apucarana 9 1

06 União da Vitória 9 1 17 Londrina 10 0

07 Pato Branco 8 2 18 Cornélio Procópio 9 1

08 Francisco Beltrão 10 0 19 Jacarezinho 8 0

09 Foz do Iguaçu 6 2 20 Toledo 6 2

10 Cascavel 8 1 21 Telêmaco Borba 7 0

11 Campo Mourão 10 0 22 Ivaiporã 9 0
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Table 3.2: Monthly average of the estimated values from ACP models for the 22 health divisions in Paraná State 

from 2002 to 2012.  

 

 

Through the Table 3.2 it is evident that the metropolitan area has much more 

cases than other regions, due to high concentration of the population. The highest average 

expected was found from April to August. In general, a disadvantage in working with the 

number of counts rather than rates is that it is not possible to compare these numbers in an 

absolute mode. On the other hand, estimating counts of hospitalizations makes the 

interpretations direct and is a relevant information to make decision of which month the 

public service should start administering the medicine. 

To improve the evaluation and visualization of the spatial epidemiology of 

bronchiolitis hospitalizations in Paraná state, Figure 3.3 presents the spatial/geographical 

distribution of bronchiolitis hospitalizations estimated from the ACP model. When we present 

the results by tables and figures we lose some subtle patterns, maps transmit the visual 

information of the disease progressing in time and space.  

Figure 3.3 shows maps from January 2012 to December 2012 providing a 

succinct summary of geographic patterns for bronchiolitis hospitalizations.  Clusters do not 

appear in these maps. The results presented in this research is in agreement with the literature 

in the sense that bronchiolitis is usually seasonal, with epidemics occurring every year, in the 

majority of cases (BUSH et al., 2007; CAILLÈRE et al., 2008). 

Regional Division Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

02 Metropolitana 8 9 15 22 35 40 32 24 15 10 8 7

17 Londrina 5 6 8 12 17 17 12 8 5 4 4 4

05 Guarapuava 3 4 5 7 9 10 10 8 6 5 4 3

15 Maringá 3 4 5 7 9 9 7 5 3 3 2 3

09 Foz do Iguaçu 2 2 3 4 6 8 6 6 3 2 2 2

03 Ponta Grossa 1 2 2 3 5 6 6 5 3 2 1 1

10 Cascavel 1 1 2 3 4 5 5 3 1 1 1 1

11 Campo Mourão 2 2 3 3 4 5 5 4 3 2 2 2

08 Francisco Beltrão 1 1 1 2 3 3 4 4 2 1 1 1

14 Paranavaí 1 2 2 4 4 4 3 2 1 1 1 1

16 Apucarana 1 1 2 2 3 4 2 2 1 1 1 1

20 Toledo 1 1 1 2 3 3 3 2 1 1 0 0

01 Paranaguá 1 1 1 1 1 2 2 2 1 1 1 1

06 União da Vitória 0 0 1 1 2 2 2 2 1 1 1 0

07 Pato Branco 1 1 1 1 2 2 2 2 1 1 1 1

12 Umuarama 1 1 1 1 2 2 2 2 1 1 1 1

13 Cianorte 1 1 1 2 2 2 2 1 1 1 0 0

18 Cornélio Procópio 0 0 1 1 1 1 2 1 1 0 0 0

19 Jacarezinho 0 1 1 1 2 2 2 2 1 1 1 1

21 Telêmaco Borba 0 1 1 1 2 2 2 1 1 1 0 0

04 Irati 0 0 0 0 1 1 1 1 1 0 0 0

22 Ivaiporã 0 0 0 0 1 1 1 0 0 0 0 0
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Figure 3.3 - Distribution of bronchiolitis hospitalizations estimated from the ACP model for each month of 2012 in Parana State. 
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Figure 3.3 shows the number of predicted bronchiolitis hospitalizations. For a better view the 

data was truncated when the number of hospitalizations exceeded the maximum 20 counts per 

month. The 2
nd

 and 17
th

 health divisions have the largest populations, so they also have the 

highest counts. In this sense the graphic tend to emphasize areas of high population. We can 

see that the increase in hospitalizations is evident from July until October where the seasonal 

peaks occur. On the other hand, from December to February the number of cases drops.  

3.4 Final Considerations 

The temporal and spatial variation analysis performed for bronchiolitis 

hospitalizations were essential for the characterization of the structure and dynamics of this 

disease for a better understanding of the population and virus interaction with the environment 

each regional health division of Paraná State. 

Although Poisson regression model is popular in the literature for time series, it 

was evident that the ACP model presented a better fit of the data in relation to Poisson model. 

Actually, that was expected due to the advantages of using the ACP model, mentioned in 

Chapter 2. 

Thus, the results showed that we have to be careful in using Poisson regression 

model for time series. Even when this model is able to take the serial correlation into account, 

the fit may be not so satisfactory. In terms of RMSE, ACP was superior to Poisson model in 

22 time series evaluated in this study. 

Furthermore, it is important to highlight that we analyzed count data instead of 

rates. In the first moment, it may appears disadvantageous because, analyzing only the 

number of occurrences hamper the comparison among different regions, as regions with more 

children tend to have more disease cases. But on the other hand, there are at least two 

advantages. The first one is that we do not need to wait alive births data become available and 

the results and analyses can be up to date. The second, the interpretation of the estimatives, is 

direct in number of hospitalizations, helping the public management of financial resources 

and supporting future decisions. 
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Capítulo 4 

Conclusões e Trabalhos Futuros  

 

This research brought out the advantages of using models developed for time 

series of counts in addition to the conventional techniques and demonstrated that actually 

ACP model has better performances for the case in our study compared to to Poisson or 

negative binomial models. 

With the conditional autoregressive Poisson model, it was possible to identify 

both seasonal pattern for each health division as well as where the disease/virus has been 

more incident. 

Furthermore, this study has potential to be extended to other works.  In the 

literature there are other different approaches for modeling count data. So it would be 

important in the future to complement this research with other methods.  

Forecasting can be obtained from the estimated ACP model, which is natural due 

to the autoregressive feature of this model. Furthermore, the analysis can be extended to 

others states of Brazil and the results can be updated. Other epidemiological data can also be 

taken into account, or we can simulated count data to compare actual performances among the 

applied methodologies. 

It is important to highlight that other environmental and climatological 

explanatory variables can be included in the models. Indeed, this fact was one of the reasons 

for the choice of ACP model. Adding explanatory variables can improve mainly the 

prediction. 

Although some maps were built to improve the visualization of spatial variability, 

some analysis, for example Moran Indices can be performed in future analysis.  

 

 


