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Resumo

A análise de Séries Temporais constitui uma importante área da Estatística, com a qual

é possível explicar e predizer uma série de eventos, em particular fenômenos observados

ao longo do tempo. Este estudo aborda conceitos e teorias pertinentes a área de Séries

Temporais, em particular, aqueles que contemplam a Análise de ondaletas (wavelets). A

junção destas duas teorias possibilita analisar mesmo os menores detalhes presentes em

uma dada série temporal. Além disso, métodos bootstrap tem sido elaborados a partir desta

junção, os quais são capazes de contemplar a autocorrelação presente nas observações

de uma série temporal. Nesta dissertação são investigados os métodos existentes de boot-

strap baseados em wavelets, e propostas algumas abordagens baseadas nas transfor-

mada wavelet decimada (DWT) e na transformada wavelet não decimada (NDWT), a qual

é promissora devido a sua invariância por translação e inerente redundância. Além disso,

propõe-se estender o método proposto para estimar a incerteza para a média evolucionária

em curvas ou séries temporais, um problema ainda em aberto. Os métodos propostos

foram avaliados quanto aos erros, erro quadrático médio, e preservação do Expoente de

Hurst (H). Os resultados preliminares da análise de alguns mecanismos para estimar o

expoente de Hurst indicaram que tais métodos são bastante sensíveis quanto a escolha

de parâmetros de cortes, e precisam ser utilizados com cautela. Durante a análise da

preservação do expoente de Hurst utilizou-se o método de Higuchi, o qual se mostrou uma

métrica mais consistente. Os três métodos propostos e suas versões com fator de cor-

reção da correlação permitiram estimar intervalos de confiança para a média evolucionária

de um processo estocástico, cujos resultados foram constatados em séries temporais sim-

uladas. Neste contexto, o expoente de Hurst foi preservado, e tanto os erros quanto o erro

quadrático médio tenderam a zero. Por fim, os métodos propostos foram empregados para

estimar a incerteza associada a série temporal da taxa de hospitalizações por bronquiolite

no estado do Paraná-BR (2000-2014), os quais apresentaram resultados satisfatórios.

Palavras-chave: Transformada wavelet não decimada, Bootstrap, Reamostragem, Inter-

valo de Confiança, Expoente de Hurst.



Abstract

The time series analysis constitutes an important area of statistics, which is possible to

explain and predict a series of events, in particular, phenomena observed over time. This

study approaches concepts and theories pertinent to the area on Time Series, especially,

those that contemplate Wavelet Analysis. The combination of these two theories makes

it possible to analyze even the smallest details present in a given time series. In addition,

bootstrap methods have been elaborated from this junction, which is able to contemplate the

autocorrelation present in the observations of a time series. This dissertation investigates

the existing wavelet-based bootstrap methods and proposes some approaches based on

Wavelet Transform (DWT) and the Non-Decimated Wavelet Transform (NDWT), which is

promising because of its shift invariance and inherent redundancy. Furthermore, it is pro-

posed to extend the proposed method to estimate the uncertainty for the evolutionary mean

in curves or time series, a problem still open. The proposed methods were evaluated for

errors, mean square error, and preservation of the Hurst Exponent (H). Preliminary results

from the analysis of some mechanisms to estimate the Hurst exponent indicated that such

methods are quite sensitive as to the choice of cut parameters and need to be used with

caution. During the analysis of the preservation of the Hurst exponent, the Higuchi method

was used, which proved to be a more consistent metric, between those who were analyzed.

The three proposed methods and their versions with correlation correction factor allowed to

estimate intervals of confidence for the evolutionary average of a stochastic process, such

results were observed in simulated time series. In this context, the Hurst exponent was

preserved, and both the error and the mean squared error tended to zero. Finally, the pro-

posed methods were used to estimate the uncertainty associated with the time series of the

hospitalization rate for bronchiolitis in the state of Paraná-BR (2000-2014), which presented

satisfactory results.

Keywords: Non-decimated Wavelets, Multiscale Analysis, Boostraping, Resampling, Con-

fidence Interval.
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Introduction

A time series is a sequence of observations usually ordered in equally spaced time

intervals. The main purposes of studying time series are describing, modeling, and forecast-

ing data from a stochastic process (CHATFIELD, 2013; WEI, 1994). Because of time series

autocorrelation structure, maintaining the data order is of great importance, and some spe-

cific techniques need to be used for modeling or forecasting a time series. Depending on

the time series features, such as non-stationarity and sparsity, several classical models

are not an adequate approach. In this sense, the wavelet analysis have been a successful

methodology.

Among the several advantages of wavelet methods are their scale/time adaptively

to erratic fluctuations and non-linearity in time series as well as the excellent mean squared

error properties when they are used for estimating functions containing non-stationarities

and irregularities of different forms, such as cups or chirps (PICARD; TRIBOULEY, 2000).

Because of that, wavelet regression, e. g., have being successfully used in several areas

(GIMENES, 2015; DONOHO; JOHNSTONE, 1994; DONOHO; JOHNSTONE, 1995; NA-

SON, 2010). The wavelet coefficients have less autocorrelation than the observed time

series, and this allows applying methodologies that are only suitable for non-dependent

data, such as bootstrap (GOLIA, 2002; TANG; WOODWARD; SCHUCANY, 2008).

So, in this dissertation, we are going to analyze the existent wavelet-based boot-

strapping methods aiming to propose a method based on the non-decimated wavelet trans-

form (NDWT) (NASON, 2010; VIDAKOVIC, 1999; NASON; SAPATINAS; SAWCZENKO,

1997; NASON; SILVERMAN, 1995; NASON; SACHS; KROISANDT, 2000), since the NDWT

translation /shift-invariance and redundancy seem to be interesting properties to be com-

bined with bootstrap.

Furthermore, wavelet-based bootstrapping methods have been used to estimate

the CI to some statistic estimated from the time series. Although we are also going to do

that, we aim to built the CI for the mean on each observed time. In this approach we are

considering the time series as the mean of a stochastic process. Thus, the uncertainty
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would be available for the mean of such process, which can also be represented by a

wavelet regression model where the error term can be estimated. This approach for this

open problem would be very useful for several applications where wavelets are used for

both modeling or forecasting with uncertainty estimated for each observed time.

However, some conditions need to be guaranteed so that the surrogate time series

from boostrap method can be used to determine the IC, either for a statistic or for the mean

of a stochastic process. Among them, is the autocorrelation or self-similarity parameter

preservation (RESTA, 2012; KANG, 2016), which indicates that time series obtained by

bootstrap has similar characteristics to the series originally analyzed.

Although the confidence interval (CI) estimation is of considerable interest of a range

of applications, first we evaluated the development of an appropriate method to estimate CI

using simulated time series, containing diverse types of behaviors: trend, long memory,

among other characteristics. But, in a second moment, the introduced methods is applied

in order to estimate the uncertainty of data on bronchiolitis in Paraná State - Brazil.

Thus, the aims of this dissertation can be expressed as:

• Estimation of the uncertainty for the evolutionary mean, 𝜇𝑡, of a stochastic process

using bootstrap resampling of wavelet coefficients;

• Studying methods for estimating Hurst exponent.

• Evaluating methods for resampling time series;

• Application of these methods to Biostatistics data.

This work is organized in articles as follows. Chapter 1 presents a literature review

of the wavelet methods for dealing with time series, illustrating advantages and limitations

of these methods in resampling time series. Chapter 2 discuss about the application of

empirical methods for estimating Hurst exponent. Chapter 3 presents three wavelet-based

bootstrapping and evaluates if the Hurst exponent is preserved after appling those methods.

Chapter 4 contains an application of wavelet-based bootstrapping methods for estimating

the uncertainty of the mean rate bronchiolitis time series 3. In Chapter 5, general conclu-

sions and discussions of this dissertation are presented.

3 Chapter accepted for publication in: Frontiers of Biostatistics in Bioinformatics, for more information see
Medeiros and Souza (2018).



14

Chapter 1

Literature Review

Suppose we have a parametric space 𝑇 and a probability space (Ω, 𝐴, 𝑃 ), a stochas-

tic process is a family 𝑍 = {𝑍(𝑡), 𝑡 ∈ 𝑇}, such that, for each 𝑡 ∈ 𝑇 , 𝑍(𝑡) is a random

variable (MORETTIN; TOLOI, 2006). Stochastic process is a central statistical approach to

define the modern concept of time series. Indeed, a time series is considered as the finite

realization of a stochastic process, in which each observed time series is a trajectory of a

stochastic process.

Time series requires some special treatment because of its dependence structure.

Some mechanisms are of great importance to deal with time series particularities such

as autocorrelation function (ACF), the partial autocorrelation function (PACF) and Hurst

exponent (H), which in general are used to analyze the presence of periodicity, long memory

and to find the order of classical models as ARIMA model, among others (WEI, 1994;

MORETTIN; TOLOI, 2006; CHATFIELD, 2013).

When the time series is stationary more options of approaches are available, but

those with non-stationarity and/or long memory does not dispose of so many alternatives. In

general, dealing with wavelet methods is an interesting alternative, since they contemplate

all these characteristics.

Wavelets are functions located in time and frequency, simultaneously. These struc-

ture is an advantage when compared to other approaches to deal with time series, as

Fourier analysis, which comprises only the frequency domain, or ARIMA models, which

contemplate just the time domain. Furthermore, as well as the Fourier coefficients charac-

terize the global behavior of a time series, which is important to analyze those time series

containing periodicity, the wavelet coefficients comprise the local behavior of a time se-

ries, allowing the analysis of its transients and singularities (MORETTIN, 1999). In the next

section, we present an overview of the main concepts of the wavelet theory.
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1.1 Wavelet Theory

As mentioned by Percival and Walden (2006) and considering wavelets has been

used since the eighties in Geophysics (DAUBECHIES, 1992), in many aspects wavelets

are a synthesis of older ideas with new elegant mathematical results and efficient computa-

tional algorithms. In few words, a wavelet is a small localized wave (𝜓) with some attractive

mathematical properties (VIDAKOVIC, 1999). Specially, we can derive a family of daughter

wavelets translating and dilating 𝜓 which forms a wavelet base to represent a time series

in the time and frequency domain (wavelet domain) simultaneously (VIDAKOVIC, 1999;

NASON, 2010; KENDERDINE, 2012).

Given a function 𝑓 , we say that 𝑓 belongs to the space of all square-integrable

functions, denoted by L2(R), if

a.
∫︀

|𝑓 |2 < ∞;

b. ||𝑓 || =
√︁∫︀

𝑓 2;

c. ⟨𝑓, 𝑔⟩ =
∫︀
𝑓𝑔.

A wavelet is a function 𝜓 belonging to L2(R), satisfying the following conditions:

1.
∫︀ +∞

−∞ 𝜓(𝑥)𝑑𝑥 = 0;

2.
∫︀ +∞

−∞ 𝜓2(𝑥)𝑑𝑥 = 1;

3. If 𝜓(𝑓) is the Fourier transform of 𝜓(𝑥) then

𝐶𝜓 =
∫︁ ∞

0

|𝜓(𝑓)|
𝑓

𝑑𝑓.

The property 1 motivates the name wavelet (small wave) and the property 3 is called

of admissibility condition (KENDERDINE, 2012; VIDAKOVIC, 1999).

For each wavelet 𝜓 we have an associated function 𝜑, called of scaling function.

A classical example is the Haar wavelets, whose the scaling and wavelet functions are

defined, respectively, by

𝜑(𝑡) =

⎧⎪⎨⎪⎩
1 if 0 ≤ 𝑡 < 1

2 ,

−1 if 1
2 ≤ 𝑡 < 1,

0 otherwise

𝜓(𝑡) =
{︃

1 if 0 ≤ 𝑡 ≤ 1,
0 otherwise

A family of the functions 𝜓𝑎,𝑏 can be obtained scaling and translating the function 𝜓,

that is

𝜓𝑎,𝑏 = 1√
𝑎
𝜓

(︂
𝑡− 𝑏

𝑎

)︂
(1.1)
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with 𝑎 ∈ R+ and 𝑏 ∈ R (VIDAKOVIC, 1999). The family of functions 𝜓𝑎,𝑏 represents the

"daughter wavelets", and because of that, the functions 𝜓 and 𝜑 are also called of "the

mother" and "the father" functions, respectively. Although the daughter wavelets appear to

be derived only from the mother wavelet, is possible to define them in terms of the father

wavelet, as described by Aboufadel and Schlicker (2011).

Let 𝑓(𝑥) be any function of L2(R), then

𝐶(𝑎, 𝑏; 𝑓(𝑡), 𝜓(𝑡)) = ⟨𝑓, 𝜓𝑎,𝑏⟩ =
∫︁
𝑓(𝑡)𝜓𝑎,𝑏(𝑡)𝑑𝑡. (1.2)

is the continuous wavelet transform (CWT) of 𝑓 with respect to the wavelet 𝜓. For con-

tinuous case a family 𝜓𝑎,𝑏 can be obtained translating and dilating the Haar function (VI-

DAKOVIC, 1999).

The CWT of a function has information redundancy, but this not always is a desirable

characteristic. A classical approach to deal with this redundancy is performing a discretiza-

tion, replacing 𝑎 and 𝑏 in Equation 1.1 by 2−𝑗 , and 𝑘2−𝑗 , respectively, where 𝑗, 𝑘 ∈ Z,

what results in the decimated DWT with respect to the mother wavelet 𝜓. However, there

are many others discretization forms, some of them are described by Daubechies (1992),

Vidakovic (1999), Heinlein (2003), and Donoho and Candes (2005).

The choice of a particular wavelet transform (discrete or continue) depends on cer-

tain characteristics desirable in each context. In time series analyses DWT has been widely

applied. However, NDWT (another discretization) also has been used because of its special

features such as shift-invariance.

When a wavelet transform is applied, a natural decomposition of the function 𝑓 ∈
L2(R) occurs, what are called multiresolution analysis (MRA) (MALLAT, 1989). MRA can

be represented by a sequence of closed subspaces {𝑉𝑗, 𝑗 ∈ Z} of L2(R) such that the

following properties are satisfied:

MRA1: (Nested interval) . . . ⊂ 𝑉0 ⊂ 𝑉1 ⊂ 𝑉2 . . .

MRA2: (Density)
⋃︀
𝑗∈Z

= L2(R);

MRA3: (Separation)
⋂︀
𝑗∈Z

= {0};

MRA4: (Scale invariance) 𝑓(𝑡) ∈ 𝑉𝑗 ⇔ 𝑓(2𝑗𝑡) ∈ 𝑉0, ∀𝑗 ∈ Z;

MRA5: (Translation invariance) 𝑓(𝑡) ∈ 𝑉0 ⇔ 𝑓(𝑡− 𝑘) ∈ 𝑉0, ∀𝑘 ∈ Z;

MRA6: ∃ 𝜑 ∈ 𝑉𝑗 for which the set {𝜑𝑗,𝑘, 𝑘 ∈ Z} is an orthonormal basis of 𝑉𝑗.

The MRA1 property indicates that a 𝑓 ∈ L2(R) function can be approximated in

several resolution levels determined by the vector spaces 𝑉 𝑗. The best approximation is



Chapter 1. Literature Review 17

obtained by considering the orthogonal projection of 𝑓 (MORETTIN, 1999). The MRA2

property indicates that as the resolution 2𝑗 increases, then the approximate function for

𝑓 converges to its true value. Similarly, if the resolution decreases the approximation of

𝑓 converges to the null function (MRA3). The MRA4 indicates that the details present at

a resolution level 2𝑗 must be present at the level 2𝑗+1. The MRA5 property indicates that

moving the 𝑓 function in 𝑘 units causes no change in the resolution level. The last property

(MRA6) is of great importance to calculate scaling and wavelets coefficients (see equation

1.4 and 1.5) (MORETTIN, 1999; VIDAKOVIC, 1999).

Considering we have a MRA, given a time series 𝑌 = (𝑦0, 𝑦1, · · · , 𝑦𝑛−1), with 𝑛

observations, it can be represented as a function 𝑓 in terms of the scaling function 𝜑 and

wavelet functions 𝜓 as

𝑓(𝑡) =
𝑛−1∑︁
𝑘=0

𝑐𝐽0,𝑘𝜑𝐽0,𝑘(𝑡) +
𝐽−1∑︁
𝑗=𝐽0

𝑛−1∑︁
𝑘=0

𝑑𝑗,𝑘𝜓𝑗,𝑘 (1.3)

where 𝐽 − 1 < log2 𝑛 ≤ 𝐽 , 𝑗 = 𝐽0, · · · , 𝐽 − 1 representing a multiresolution level,

and 𝑘 = 0, · · · , 𝑛 − 1. Taking 𝜑𝐽0,𝑘(𝑡) = 2𝐽0/2𝜑(2𝐽0(𝑡 − 𝑘)), and 𝜓𝑗,𝑘(𝑡) = 2𝑗/2𝜓(2𝑗(𝑡 − 𝑘)),
the coefficients 𝑐𝐽0,𝑘 and 𝑑𝑗,𝑘 called the smooth (scaling) and detail (wavelet) coefficients,

respectively, comprise the NDWT of the time series 𝑌 . Analogously, Taking 𝜑𝐽0,𝑘(𝑡) =
2𝐽0/2𝜑(2𝐽0𝑡 − 𝑘), 𝜓𝑗,𝑘(𝑡) = 2𝑗/2𝜓(2𝑗𝑡 − 𝑘), the coefficients 𝑐𝐽0,𝑘 and 𝑑𝑗,𝑘 comprise the DWT

of the time series 𝑌 .

The wavelet and scaling coefficients 𝑐𝐽0,𝑘 and 𝑑𝑗,𝑘 are given by:

𝑐𝐽0,𝑘 = < 𝑓(𝑥), 𝜑𝐽0,𝑘 >=
∫︁ +∞

−∞
𝑓(𝑡)𝜑𝐽0,𝑘𝑑𝑡 (1.4)

𝑑𝑗,𝑘 = < 𝑓(𝑥), 𝜓𝑗,𝑘 >=
∫︁ +∞

−∞
𝑓(𝑡)𝜓𝑗,𝑘𝑑𝑡 (1.5)

where <,> is the usual internal product operator. To pass from the time series domain to

the wavelet domain (obtaining the wavelet coefficients) is necessary to use some decompo-

sition algorithm. A well-knowing algorithm for calculating these coefficients is the Pyramidal

or Cascade Algorithm (MALLAT, 1989). Given a wavelet function 𝜓 ∈ L2(R) and 𝑚 ∈ R so

that 𝑚 ≥ 1, we say that 𝜓 has 𝑚 vanishing moments if

∫︁ +∞

−∞
𝑡𝑙𝜓(𝑡)𝑑𝑡 = 0, 𝑙 = 0, 1, . . . ,𝑚− 1, (1.6)

under certain technical conditions (NASON, 2010). The number of vanishing mo-

ments of a wavelet function is an important argument to consider in decision of the wavelet
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family, because for 𝑚 big enough the correlations between coefficients within and among

levels decay rapidly, on the other hand, increasing the number of vanishing moments also

may have undesired effects, specially, when DWT is being used (BREAKSPEAR; BRAM-

MER; ROBINSON, 2003).

1.2 Wavelet based bootstrap methods for resampling time se-

ries

Wavelet Analysis have been successfully applied to deal with time series and its

characteristics, such as seasonal and/or cyclic effects, trend, irregular fluctuations, non-

stationarity, with long memory, among others. The non-parametric regression using wavelet

multiscale decomposition is an alternative in situations where classical models can not be

applied. Furthermore, wavelets can also be used for the estimation of spectral densities

of stationary time series and of time-varying spectra using localized periodogram based

estimators (PERCIVAL; WALDEN, 2006).

Although DWT coefficients have desirable features, as weakly autocorrelation be-

tween nearby coefficients, among its limitations are the applicability only for power-of-two

time series size, variant with respect to translations and posses only a few coefficients to be

resampled in each decomposition level (KENDERDINE, 2012). In conditions where trans-

lation or shift-invariance is important, the non-decimated wavelet transform (NDWT) (NA-

SON; SILVERMAN, 1995) is a good alternative. NDWT has the same number of wavelet

coefficients in each resolution level, overcoming the DWT limitation of few coefficients to

be resampled. Furthermore, NDWT is more flexible with respect to the time series length,

being appropriate for all those which are a multiple of two, and has an easy implementation

with more than one algorithm, including the pyramidal algorithm (MALLAT, 1989).

Operationally, the pyramidal algorithm performs of NDWT consists of applying DWT

twice at each stage, wherein the second round is applied to the coefficients at previ-

ous level translated by a single index. The coefficients from each DWT can be consid-

ered almost independent and normally distributed. In addition to DWT, NDWT and CWT

already discussed, some other important WT have been reported in the literature such

as discrete wavelet package (DWPT) (NASON; SILVERMAN, 1995; VIDAKOVIC, 1999;

KENDERDINE, 2012). At first, such transforms could be used for bootstrapping time se-

ries. However, throughout this text, some limitations for the use of most of these transforms

will be presented.

Politis and Romano (1994) developed a resample method called Stationary Boot-

strap (SB), which is propitious to deal with stationary weakly dependent time series. Whose

the pseudo-time series generated is a stationary time series, which is an advantage when

compared with the methods developed earlier in the time domain.
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The existent time and frequency domain bootstrapping approaches to access the

uncertainty of estimates in time series, such as parametric, residual, block bootstrapping,

and periodogram based bootstrapping, they also are mainly designed for stationary series

with short-range dependence and are not adequate for those time series exhibiting long-

range dependence (KENDERDINE, 2012). Furthermore, parametric and frequency-domain

bootstraps work best for series that follow a Gaussian distribution, but can be problematic

for time series exhibiting non-Gaussianity (PERCIVAL; SARDY; DAVISON, 2000).

Non-Gaussian series are better handled by block bootstrapping, but the quality of

this approach depends critically on chosen size of the blocks. By taking these difficulties

into account, Percival, Sardy and Davison (2000) proposed a DWPT wavestrapping method

which is an adaptive wavelet-based scheme for bootstrapping time series that can be mod-

eled by either stationary short or long-memory processes. Since then, some other develop-

ments have been proposed in wavelet-based bootstrapping methods.

Golia (2002) applied the Stationary Bootstrap (SB) to the wavelet coefficients of time

series exhibiting long memory. This application was possible because the wavelet coeffi-

cients are wide-sense stationary and weakly correlated in each scale (WORNELL; OPPEN-

HEIM, 1996). In her work, she used the Daubechies wavelet with 4 vanishing moments and

coarsest level of details equals to 4 in DWT, the results were good, however the author

comments on the need of evaluating this approach for other long memory processes.

In Breakspear, Brammer and Robinson (2003) the resampling of time series in the

wavelet domain revealed to have all the desired properties of a nonlinear surrogate tech-

nique, including the preservation of linear properties, multiple possible realizations, removal

of nonlinear structure, acceptable computational demands and extension to multivariate

cases. They compared three classes of resampling wavelet coefficients within each scale:

free permutation; cyclic rotation and block resampling. The results showed that block re-

sampling of wavelet coefficients optimizes the mentioned properties in comparison to the

other wavelet resampling schemes.

In Angelini et al. (2005) a DWT wavelet based resampling scheme was presented

and compared to the traditional Fourier based phase randomization bootstrapping within

the context of turbulence energy cascades. The comparison between two the resampling

methods and observed ensemble statistics constructed by clustering similar meteorological

conditions demonstrated that the wavelet method reproduced several features related to

intermittency of the ensemble series, what did not happen with the Fourier based method.

Feng, Willemain and Shang (2005) compared the wavelet-based bootstrap with the time

domain moving block bootstrap for estimating the standard errors of the unit lag sample

autocorrelation and the sample standard deviation. The results showed the achieved per-

formance of wavelet-based bootstrap as better than the moving block bootstrap for both

short-range and long-range dependent data.
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In Keylock (2006), Keylock (2007), Keylock (2008), a method is presented for gen-

erating surrogates that preserve the local mean and variance of the original time series.

The author discusses the difficulty of a method consisting of simple shuffling of wavelet

coefficients that does not preserve the inherent periodicity of the wavelet coefficients. To

overcome this difficulty, he used the iterated amplitude adjusted Fourier transform (IAAFT)

to randomize the wavelet coefficients at each level of the non-decimated wavelet trans-

form (NDWT) or Maximal Overlap Discrete Wavelet Transform (MODWT) as in Percival and

Walden (2006).

In Yi et al. (2007) a two-step wavestrapping method was introduced and applied to

complex time series acceleration data from mobile computing users. This method consists

of applying the Stationary Bootstrap (POLITIS; ROMANO, 1994) in one-step of DWT, which

is called of Stationary Parallel Bootstrapping (first step), followed by an adjustment of trend

and energy (second step). Two obstacles of dealing with acceleration data, that had not

adequately be accounted for in the prior wavelet-based approaches were solved by Yi et al.

(2007). First, the vertical correlation of wavelet coefficients among scale levels, which yields

less disruptive surrogate data. Second, since the block length of the wavestrap method

cannot cover the general trend of the original data adequately, the general trend of the

acceleration data can be broken. With the two-step wavestrapping, the vertical relationship

among levels could be preserved since the scaling and wavelet coefficients on the same

time frame are resampled together. The second problem was overcome by a proposed

energy adjustment techniques.

Kenderdine (2012) has discussed a method of combining DWPT with Wavelet Lifting

that was used to decompose time series into independent components. However, there are

some challenges and difficulties related to these methods. One question is related to the

correlations between the wavelet coefficients, we know that it becomes small even if the

time series itself is highly autocorrelated in the time domain correlation (GOLIA, 2002; YI et

al., 2007). Actually, this correlation decays rapidly with increasing the number of vanishing

moments of the wavelet filter. On the other hand, high-order wavelets with larger supports

may produce more undesirable boundary artifacts (YI et al., 2007). Hence, the choice of

vanishing moments depends on the properties of the data, with narrow support for weakly

correlated or short data sets and larger support for strongly correlated or long data sets

(BREAKSPEAR; BRAMMER; ROBINSON, 2003).

Considering that wavelet-based bootstrapping methods have been used to estimate

CI for parameters from time series, Tang, Woodward and Schucany (2008), discussed about

the lack of coverage of parameters for simple linear regression for time series data using

simulated data and DWT. The authors also presented a parametric wavelet bootstrap that

showed better results only for the simulated white noise stochastic process, however, this

method is not applicable in general. Furthermore, the authors indicated the possibility of
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better results by resampling DWPT. As aforementioned one of the difficulties of resampling

wavelet coefficients in DWT is the fact that there are only few coefficients to be resampled

in the so-called smooth resolution levels. With the DWPT, where both smooth and detail

coefficients are decomposed in each level promises to be more advantageous than the

DWT since all decomposition levels have the same number of coefficients as the original

time series. On the other hand, the shift-invariance is an important characteristics to deal

with wavestrapping. In this sense, the NDWT is shift-invariant and it preserves the original

length of the data in all decomposition levels, seeming to be a promising choice.

Although of the redundancy of the wavelet coefficients generated by NDWT implies

higher intra-level correlation, one can identify in which levels of decomposition the bootstrap

can be applied without any intervention to reduce the correlation. The first level of decom-

position is an example where we can do it since the coefficients of this level are close to

pure noise (DAUBECHIES, 1992) even for the NDWT.

Kang and Vidakovic (2017) proposed a method called MEDLA, which reduces the

autocorrelation in NDWT decomposition levels. The MEDLA consists on resampling 𝑚 ran-

dom pairs of wavelets coefficients keeping the distance between them at least 𝑞𝑗 , wherein

𝑞𝑗 = 2𝐽−𝑗 , and take the logarithm of an average of the two squared wavelet coefficients

in each one of the pairs. Furthermore, these methods presented some estimates for the

Hurst statistics (H). When compared to standards approaches Kang and Vidakovic (2017)

methods presenting smaller MSE. Feng and Vidakovic (2017) presented a robust method

for estimating Hurst exponent, where trimean estimator is applied on NDWT coefficients,

this method reduces the variance of the estimators in most cases. These studies show that

is possible to use NDWT to obtain good estimates.
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Chapter 2

Hurst Exponent Estimation

Introduction

Long memory (LM), long-range dependence (LRD), long-range persistence (LRP)

or fractal process are widely observed in many fields such as Economy, Physics, and Statis-

tics. These process comprises an important subject of study of the series analysis. While in

the classical time series approaches as autoregressive moving average model (ARMA) the

autocorrelation function (ACF) decreases rapidly to zero, in LM process this decay occurs

slowly (hyperbolically) (MORETTIN; TOLOI, 2006).

Although long memory process are reported in many periods of the human his-

tory, including the biblical passage: "seven years of great abundance" and "seven years of

famine", whose could be understood as a strong serial correlation, both the studies and the

development of methods to work with such processes had ascension in the 20th century

(BERAN et al., 2013).

Among the many contributors to the development of techniques for analysis of long

memory time series is the hydrologist Hurst (HURST, 1951), who developed a measure

called of Hurst exponent (H). This statistics indicates the intensity of the present autocorre-

lation in a time series. Followed by Mandelbrot (1982), which related the Hurst coefficient

to the fractal dimension, Beran (1994), which gathered the memory long theory, as well as

provided codes for estimating Hurst exponent in the Splus software, and Taqqu, Teverovsky

and Willinger (1995) who compared the main methods for estimating the Hurst statistics.

Currently, the Hurst coefficient is frequently used in the time analysis. However,

most of the methods for estimating 𝐻 are empirical. Beran et al. (2013) suggests that such

methods should be used with caution because these "methods involve tuning (or cut-off)

parameters that are usually based on a subjective visual impression", i. e., for different

parameter choices "one may arrive at completely different conclusions for the same data
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set", and even if these difficulties are supered "the statistics used in the heuristic methods

have poor convergence properties".

In this paper, we intend to analyze the performance of the classical empirical meth-

ods in estimating H statistics. Although there are some easy implementation available for

estimating the Hurst exponent (BERAN, 1994; VEDOVATTO, 2015) we are going to use

those shared in the statistical software R Core Team (2016). The initial proposal is to show

how such methods can lead to different results starting from the same cut-off parameters. At

a second moment, we are going to use the graphical method to estimate the Hurst exponent

for each one of the evaluated estimation methods.

To analyse the quality of this estimation we simulated time series of different lengths

and Hurst measure, representing a Fractional Gaussian Noise (FGN). For each time series,

the statistic H was estimated using nine methods.

This paper is structured as follows. Section 2.1 contains a brief description of the

main Hurst estimation methods. Section 2.2 presents the computational aspects of this pa-

per. Results are discussed at Section 2.3. Finally, in Section 2.4 are the final considerations

of this study.

2.1 Methods for estimating Hurst exponet

As aforementioned, who first observed the H statistics was Hurst (1951), which re-

sulted in the creation of the rescale range statistic, usually called of R/S statistics. For

estimating R/S statistics of a given time series 𝑌 = (𝑦1, . . . , 𝑦𝑝) containing 𝑝 observations,

one needs to follow procedure below (RESTA, 2012; KHAREL, 2010):

1. Calculate the time series of returns 𝑅 = {𝑟𝑡, 𝑡 = 1, . . . , 𝑝− 1}, where 𝑟𝑡 is given by

𝑟𝑡 = 𝑦𝑡+1 − 𝑦𝑡
𝑦𝑡

. (2.1)

2. Divide 𝑅 into 𝑘 sub series with length n.

3. For each sub-series estimate the mean value (𝐸𝑚) and the standard deviation (𝑆𝑚),
where 𝑚 = 1, . . . , 𝑘.

4. Normalize the data by subtracting the sample mean:

𝑍𝑎,𝑚 = 𝑅𝑎,𝑚 − 𝐸𝑚, 𝑎 = 1, . . . , 𝑛. (2.2)

5. Determine the cumulative time-series 𝑌𝑎,𝑚

𝑌𝑎,𝑚 =
𝑎∑︁
𝑑=1

𝑍𝑑,𝑚, 𝑎 = 1, . . . , 𝑛. (2.3)
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6. Find the range:

𝑅𝑚 = max{𝑌1,𝑚, . . . , 𝑌𝑎,𝑚} − min{𝑌1,𝑚, . . . , 𝑌𝑎,𝑚} (2.4)

7. Obtain the mean value of the rescale range for the sub-series, given by

(𝑅/𝑆)𝑛 = 1
𝑘

𝑘∑︁
𝑚=1

𝑅𝑚

𝑆𝑚
(2.5)

8. Repeat the steps 1 through 7 increasing the 𝑛 value, for all possible integers divisors

of 𝑝− 1.

9. Plot (𝑅/𝑆)𝑛 statistics against log(𝑛) and use a simple regression to estimate the

slope, which is an estimative for H;

If the slope is between 0 and 0.5 we have an anti-persistent (short memory), and for

𝐻 between 0.5 and 1 the process is persistent (long memory). However, Taqqu, Teverovsky

and Willinger (1995) suggest that to obtain reliable estimates one should not use the low

and very high end of the graph to estimate 𝐻. Instead, the authors recommend setting a

cut-off point. Then, these values between the lower and the upper cut-off pints should be

used to estimate 𝐻.

In addition to the R/S statistics, other methods of frequent use in the literature for

estimating the Hurst exponent are: aggregated variance method, differenced aggregated

variance method, aggregated absolute value (moment) method, Higuchi’s or fractal dimen-

sion method, Peng’s or variance of residuals method, periodogram method, and boxed

(modified) periodogram method. A description of these methods are presented in Taqqu,

Teverovsky and Willinger (1995), Beran et al. (2013), Wuertz, Setz and Chalabi (2013).

For simplifying the referencing of the aforementioned methods we are going to follow

the notation described in the Table 1.

Table 1 – Notation for Hurst exponent estimation methods

Methods Notations
Aggregated Variance E1

Differenced Aggregated Variance E2
Aggregated Absolute Value E3

Higuchi E4
Variance of Residuals E5

R/S E6
Periodogram E7

Modified Periodogram E8
Wavelet E9
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2.2 Simulation

Currently, there is a diversity of methods used for calculating the Hurst exponent.

The statistical software R (R Core Team, 2016) contain many packages that possess dif-

ferent ways of estimating it. In particular, the package fArma (WUERTZ; SETZ; CHALABI,

2013), which we are going to use in this paper, posses 9 methods.

For illustrating the performance of these methods, some time series with sizes: 128,

512, and 2048 were simulated, representing Fractional Gaussian Noise (FGN). For each

time size three time series contemplating the H values: 0.35, 0.55, 0.75, and 0.95 were

simulated by Beran (1994) method. Time series of size 128 representing FGN for 𝐻 equal

0.35, 0.55, 0.75, and 0.95 can be seen, respectively, in Figure 1.
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Figure 1 – Time series of length 128, generated from H equal to 0.35, 0.55, 0.75, and 0.95,
respectively.
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2.3 Results

Table 2 represents the estimates obtained from the functions of the R package

fArma. Except for the methods E7, E8, and E9, which have distinct mechanisms for es-

timating 𝐻, all the other needs of cut-off points. For this first overview we use the default

cut-off points of the R package aforementioned.

Table 2 – Hurst exponent estimated from FGN

TS length / H method E1 E2 E3 E4 E5 E6 E7 E8 E9
L=128, H=0.35 -0.104 0.697 -0.000 0.411 0.392 0.863 0.274 0.300 0.258
L=128, H=0.55 0.252 0.878 0.342 0.535 0.593 0.987 0.547 0.566 0.409
L=128, H=0.75 0.900 1.425 1.083 0.832 0.594 0.572 1.127 0.602 0.301
L=128, H=0.95 0.129 0.720 0.247 0.968 0.780 0.781 1.090 1.003 1.009
L=512, H=0.35 0.484 0.726 0.558 0.402 0.425 0.531 0.474 0.266 0.309
L=512, H=0.55 0.287 0.767 0.372 0.287 0.487 0.662 0.260 0.365 0.560
L=512, H=0.75 0.458 0.766 0.578 0.852 0.741 0.886 0.689 0.693 0.889
L=512, H=0.95 0.645 1.143 0.735 0.942 0.923 0.863 1.141 0.855 0.745

L=2048, H=0.35 0.335 0.400 0.367 0.343 0.325 0.369 0.356 0.272 0.372
L=2048, H=0.55 0.474 0.621 0.500 0.488 0.562 0.586 0.627 0.502 0.553
L=2048, H=0.75 0.662 0.879 0.688 0.635 0.721 0.756 0.729 0.653 0.739
L=2048, H=0.95 0.768 1.053 0.785 0.915 0.891 0.929 0.952 0.891 0.908

From Table 2 we can notice that H estimates can be very different from the simulated

values. In general, the methods underestimate or overestimate a lot the 𝐻 value, and in

some cases values greater than one are observed. For𝐻 = 0.35 and time series size 2048,

the estimated values are more consistent with the real value, but, this does not occur with

the other simulated values of 𝐻. This variability could be explained by the assumption of

cut-off points for all the methods. So, on Table 3 we present the results of doing a graphical

analysis for each one of the Hurst exponent estimation method. We graphically analyze the

choice of cut-off points, block-size and all the available arguments of each method.
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Table 3 – Hurst exponent estimated from FGN by using graphical analysis

TS length / H method E1 E2 E3 E4 E5 E6 E7 E8 E9
L=128, H=0.35 0.363 0.343 0.367 0.363 0.361 0.346 0.370 0.315 0.355
L=128, H=0.55 0.578 0.579 0.552 0.553 0.552 0.592 0.547 0.559 0.582
L=128, H=0.75 0.751 0.825 0.762 0.832 0.751 0.742 0.764 0.581 0.692
L=128, H=0.95 0.840 0.819 0.940 0.957 0.970 0.945 0.816 0.973 0.999
L=512, H=0.35 0.352 0.359 0.452 0.399 0.387 0.484 0.352 0.365 0.310
L=512, H=0.55 0.503 0.551 0.507 0.405 0.560 0.616 0.548 0.559 0.562
L=512, H=0.75 0.688 0.799 0.656 0.763 0.742 0.738 0.756 0.746 0.786
L=512, H=0.95 0.853 0.933 0.866 0.922 0.937 0.929 0.909 0.953 0.949

L=2048, H=0.35 0.341 0.350 0.362 0.348 0.348 0.365 0.356 0.349 0.349
L=2048, H=0.55 0.533 0.541 0.540 0.542 0.566 0.566 0.550 0.553 0.553
L=2048, H=0.75 0.713 0.762 0.706 0.646 0.734 0.761 0.748 0.745 0.751
L=2048, H=0.95 0.821 0.948 0.814 0.901 0.946 0.939 0.952 0.941 0.966

Comparing Table 2 and 3 we could notice the difference generated by the choice of

block sizes and cut-off points. Since the choice followed a graphical analysis in determin-

ing the regression line, if other values, for example, of the block-size is established other

estimates will be generated, that may be better or worse than those presented in Table 3.

Clearly, the results presented are more close of the simulated Hurst exponent val-

ues. It can be observed that some methods seem to be more affected by the cut-off points

and the block-size than others, e. g., the Differenced Aggregated Variance method, which

presented inclusive values larger than one but presented similar values to those simulated

after the study of these measures.

Figure 2 represents adjusted regression line by using the R/S statistics for simulated

time series with size 2048 and generated from 𝐻 = 0.55. Analogous graphics were gener-

ated for all the estimation methods for the Hurst exponent. In Figure 2 also is possible to

observe the cut-off points.

Figure 2 – Estimated regression line for simulated time series with size 2048 and generated
from 𝐻 = 0.55, using the R/S statistics.
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2.4 Final Considerations

Using simulated time series we estimated Hurst exponent from 9 distinct methods

implemented in the R package fArma. The estimation obtained from default procedures was

quite divergent from each other. From a graphical analysis, where cut-off points and block-

size were selected, the true values used in the simulation were approximated by estimated

values. An important point to emphasizes is that in simulation procedures, for example, es-

timating the Hurst exponent by the graphical method is almost impracticable. In synthesis,

methods for estimating Hurst exponent are important to understand the intensity of auto-

correlation present in a time series, but, mainly the empirical methods need to be used with

caution.

In order to verify if a high number of simulations would yield more accurate estimates

in the default procedure, 1000 time series were simulated for each time series size and H

value reported in this text. However, the estimates were not satisfactory and similar to those

observed when a single time series was simulated for each time series size and H value.

The methods of Higuchi, Variance of Residuals and R/S even in the default proce-

dure presented values more acceptable to the real ones, without values outside of [0, 1].
Some discussions about solutions for determination of cut-off points are presented in Be-

ran et al. (2013). Another possibility is to opt for more robust methods to estimate 𝐻, e. g.,

Feng and Vidakovic (2017) method.
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Chapter 3

Does bootstrap based on wavelets

preserve the Hurst Exponent?

Abstract

In recent years, resampling techniques have been used in several areas of Statistics. How-

ever, most of these methodologies were developed for uncorrelated data, and areas such

as Time Series, wherein the observations present autocorrelation, have required the de-

velopment of techniques that take autocorrelation into account. Important methods of re-

sampling for time series consists of combining the decimated wavelet transform (DWT)

and a resampling technique (bootstrap) applied to its decomposition levels. Bootstrapping

can be applied because the coefficients obtained through the DWT show less correlation

than the observations in the time domain. In this paper, we implement three wavelet-based

bootstraps (wavestrap) the first based on DWT, and the others based on non-decimated

wavelet transform (NDWT). NDWT presents some advantages compared to DWT as the

free length of time series, shift-invariance and the same number of wavelet coefficients in

each multi-resolution level, what facilitates the bootstrap. Although successful applications

of these methods have being presented in the literature, some questions still remain open.

Among them, the preservation of the autocorrelation inherent to the replicated time series,

in which the intensity is measured by estimating Hurst exponent (H). So, in this paper, we

aim to analyze the performance of these methods on preserving the H statistics. To eval-

uate this performance we simulated 24 time series composed by different behaviors, and

lengths 64, 128, 256, 512, 1024, 2018. Their Hurst exponent were estimated using Higuchi’s

method before the resampling process. So, 5000 resamples were generated for each time

series and method, as well as the Hurst exponent of each time series replica. The results

obtained from bootstrap were compared to the estimates computed from the original time
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series using the errors and Mean Square Error (MSE) measures. The results point that the

available methods properly presents similar H value as the original time series, indicating

that the methods successful surrogate the time series behavior.

Keywords: Hurst exponent; Bootstrap; Wavelets; Time series.
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Introduction

An univariate time series is a sequence of observations usually ordered in equally

spaced time intervals, which represents a trajectory of a stochastic process. The analyses

of time series comprises an useful tool for explaining and solving problems in several areas

such as Economy, Geology, Statistics, Engineering, among others (WEI, 1994; BOX et al.,

2015).

Hardly accessing more than one trajectory of a same stochastic process is possible.

Even in the case of being possible to observe more time series for describing a specific ex-

periment, as acceleration data (YI et al., 2007), researchers have to deal with other aspects

such as costs, time, and human demand. Thus, techniques for bootstrapping time series,

replicating more trajectories of a stochastic process, and considering the autocorrelation

not contemplated by classical bootstrapping methods has been formulated (BÜHLMANN et

al., 1997; LAHIRI, 2013).

In the latest decades, several approaches for resampling time series were devel-

oped based on decorrelation property of the wavelet transform (GOLIA, 2002; PERCIVAL;

SARDY; DAVISON, 2000; YI et al., 2007). Essentially, the multiresolution decomposition

of a time series produces detail and wavelet coefficients arranged in levels. The wavelet-

based techniques for bootstrapping time series propose to resample these coefficients with

classical or sophisticated methods. So, a replica of this time series is obtained applying the

inverse transform.

In general, the Discrete Wavelet Transform (DWT) is chosen to perform wavelet-

based bootstrapping (BREAKSPEAR; BRAMMER; ROBINSON, 2003; GOLIA, 2002; YI

et al., 2007; TANG; WOODWARD; SCHUCANY, 2008). However, these approaches have

limitations, especially, the few number of coefficients available at higher levels of the de-

composition difficult the bootstrap procedure.

Recently Medeiros and Souza (2018) investigated three resampling methods: Naive

bootstrapping based on Non-decimated Wavelet Transform (NDWT), DWT two step waves-

trapping (TSWDWT), and NDWT two step wavestrapping (TSWNDWT). TSWDWT is a par-

ticular case of (YI et al., 2007) method, and the others two methods are wavelet-based

proposals using NDWT, which instead of DWT preserve the same number of coefficients in

each decomposition level.

In this paper, we aim to verify if the methods presented in Medeiros and Souza

(2018) preserve the Hurst exponent (𝐻). This measure is used for explaining self-similarity

features and providing the intensity of autocorrelation inside a given data set. Preserving

the 𝐻 value after resampling means to maintain the original autocorrelation characteristics

of an evaluated time series.

This paper works with 24 simulated time series, which were resampled 5000 times



Chapter 3. Does bootstrap based on wavelets preserve the Hurst Exponent? 32

for each method. Hurst exponent was compared before and after resampling by checking

the errors and MSE of its estimator. The results point that the evaluated methods properly

preserve the autocorrelation features of the analyzed time series.

The paper is organized as follows. Session 3.1 presents a brief review of the three

employed wavelet-based bootstrapping. Session 3.2 describes the method for estimating

Hurst exponent, followed by evaluation criteria of this statistics in session 3.3. Simulation

procedures are described in Session 3.4. The main results and discussions are presented

in Session 3.5. Final considerations are mentioned in Session 3.6.

3.1 Wavelet-based technique for resampling time series

The literature provides a range of books that developed in details the wavelet theory

and application, such as Vidakovic (1999), Percival and Walden (2006), and Nason (2010).

In summary, the wavelet analysis approximates a time series by a linear combination of

wavelet functions. Such combinations are obtained by dilations and translations of scaling

and wavelet functions, denoted by 𝜑 and 𝜓, respectively. In other words, a time series

𝑌 = (𝑦0, 𝑦1, · · · , 𝑦𝑛−1) can be represented as a function 𝑓 belonging to the space of all the

square-integrable functions, as follows

𝑓(𝑡) =
𝑛−1∑︁
𝑘=0

𝑐𝐽0,𝑘𝜑𝐽0,𝑘(𝑡) +
𝐽−1∑︁
𝑗=𝐽0

𝑛−1∑︁
𝑘=0

𝑑𝑗,𝑘𝜓𝑗,𝑘 (3.1)

where 𝐽 − 1 < log2 𝑛 ≤ 𝐽 , 𝑗 = 𝐽0, · · · , 𝐽 − 1 representing a multiresolution level,

and 𝑘 = 0, · · · , 𝑛− 1 (KANG; VIDAKOVIC, 2017).

Considering the wavelet base generated by 𝜓, 𝜓𝑗,𝑘(𝑡) = 2𝑗/2𝜓(2𝑗𝑡−𝑘), the obtained

coefficients 𝑐𝐽0,𝑘 and 𝑑𝑗,𝑘 represent the DWT of the time series 𝑌 . Analogously, choosing

the wavelet base generated by 𝜓, 𝜓𝑗,𝑘(𝑡) = 2𝑗/2𝜓(2𝑗(𝑡− 𝑘)), the NDWT of time series 𝑌 is

comprised by 𝑐𝐽0,𝑘 and 𝑑𝑗,𝑘 coefficients. The coefficients 𝑐𝐽0,𝑘 and 𝑑𝑗,𝑘 are called the smooth

and detail coefficients, which can be efficiently assessed using the Pyramidal Algorithm,

developed by Mallat (1989).

Based on the works of Golia (2002) and Yi et al. (2007), which proposed the Sta-

tionary Bootstrap and the Parallel Wavestrap, respectively, Medeiros and Souza (2018)

analyzed two methods TSWDWT and TSWNDWT, which are an extension of both the afore-

mentioned methods.

For implementing TSWDWT one must reproduce the Parallel Wavestrap for a single

time series 𝑌 , which the length is a power of two, and following the next procedure:

1. Decomposing Y using DWT to obtain the coarsest level of detail and wavelet coeffi-
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cients;

2. Resampling detail and wavelet coefficients using Stationary Bootstrap;

3. Applying the Inverse Discrete Wavelet Transform (IDWT) to obtain a replica 𝑌𝑏 of Y;

4. Implementing an energy and trend adjustment:

• Trend adjustment consists of decomposing both the time series 𝑌 and its sur-

rogate 𝑌𝑏 using the DWT. Then, the scaling coefficients 𝑐𝑏 obtained from 𝑌𝑏 are

surrogated by the scaling coefficients 𝑐 generated from 𝑌 ;

• The energy adjustment consists of generating the average energy for each de-

composition level of 𝑌 and 𝑌𝑏, denoted by 𝑒𝑗 . So, adjusting the average energy

for each scale level of 𝑌𝑏 to the average energy of the 𝑌 levels:

𝑑𝑏𝑎𝑗,𝑘 = 𝑑𝑏𝑗,𝑘

√︃
𝑒𝑗
𝑒𝑏𝑗
, (3.2)

where 𝑑𝑏𝑎 represents the adjustment made in each decomposition level of 𝑌𝑏;

5. The steps 1, 2, and 3 are repeated a sufficient great number of times.

Analogously, TSWNDWT procedure follows the same steps of TSWDWT replacing

DWT by NDWT. Due to the use of NDWT, this method does not require a power of two

length for Y.

The third approach contemplated by Medeiros and Souza (2018), the naive boot-

strap based on NDWT, for a given time series 𝑌 consists of:

1. Decomposing Y using NDWT for obtain detail and wavelet coefficients;

2. Resampling detail coefficients using the classical (naive) bootstrap;

3. Applying INDWT to obtain a replica 𝑌𝑏 of Y;

4. The steps 1, 2, and 3 are repeated a sufficient great number of times.

For the wavelet decomposition procedure the authors used the Daubechies (1992)

compactly supported wavelet 𝑑4. Daubechies (1992) wavelet family has been frequently

used in studies involving wavelet-based bootstrap methods, especially 𝑑4 has been chosen

for reducing boundary effect of wavelets (PERCIVAL; SARDY; DAVISON, 2000; GOLIA,

2002; TANG; WOODWARD; SCHUCANY, 2008).
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3.2 Estimating Hurst Exponent

The Hurst exponent statistic (HURST, 1951) was considered to evaluate if the an-

alyzed methods provide reliable replicas, i. e., if the main characteristics of the simulated

time series were preserved. As mentioned before, Hurst’s exponent is considered a mea-

sure of the long-range dependence intensity, or the self-similarity parameter 𝐻. The H val-

ues belong to the interval (0,1), if H> 0.5 the trend behavior of a given time series is called

persistent, otherwise, this behavior is so-called anti-persistent.

The literature provides many methods for estimating Hurst’s exponent as the Aggre-

gate Variance method, Higuchi’s method, the Periodogram method, the R/S method, among

others (HURST, 1951; HIGUCHI, 1988; TAQQU; TEVEROVSKY; WILLINGER, 1995; BE-

RAN et al., 2013). Each of these methods has advantages and disadvantages. In the latest

years, several papers have been written comparing these methods and pointing that find-

ing the optimal method is not easy (TAQQU; TEVEROVSKY; WILLINGER, 1995; CLEGG,

2006; VEDOVATTO, 2015).

In this paper, we are estimating Hurst’s exponent using Higuchi’s method (HIGUCHI,

1988). This method has been used as an efficient method to analyse non-stationary and

irregular time series. This algorithm is similar to the method of aggregated variance and is

available in free softwares, such as R. Furthermore, this method presents similar or better

results in comparative studies (TAQQU; TEVEROVSKY; WILLINGER, 1995; KRAKOVSKÁ;

KRAKOVSKÁ, 2016).

Given a time series 𝑌 , with a finite number of observations, 𝑌1, 𝑌2, . . . , 𝑌𝑛, Higuchi’s

method (HIGUCHI, 1988) is described as follows:

1. A new time series 𝑌 𝑚
𝑘 must be constructed following the expression:

𝑌 𝑚
𝑘 = {𝑌𝑚, 𝑌𝑚+𝑘, 𝑌𝑚+2𝑘, . . . , 𝑌𝑚+[ 𝑁−𝑚

𝑘 ]𝑘} (3.3)

wherein 𝑚 = 1, 2, . . . , 𝑘, indicates the first observation time to be putted in the new

time series, 𝑘 is the period followed by the choices of the rest observations of 𝑌 𝑚
𝑘 ,

and [ ] denotes the greatest integer function.

2. The length of the curve associated to each time series 𝑌 𝑚
𝑘 must be found, as follows:

𝐿𝑚(𝑘) = 1
𝑘

⎛⎜⎝[ 𝑁−𝑚
𝑘 ]∑︁
𝑖=1

|𝑌𝑚+𝑖𝑘 − 𝑌𝑚+(𝑖−1)𝑘|

⎞⎟⎠ 𝑁 − 1[︀
𝑁−𝑚
𝑘

]︀
𝑘

(3.4)

where the term 1
𝑘

𝑁−1
[ 𝑁−𝑚

𝑘 ]𝑘 represents a normalization factor.
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3. Define ⟨𝐿(𝑘)⟩ as the average over the 𝑘 sets of 𝐿𝑚(𝐾) associated to Equation 3.3. If

the power law ⟨𝐿(𝑘)⟩ ∝ 𝑘−𝐷 is satisfied, then the curve is fractal with dimension 𝐷.

The Hurst exponent𝐻 is obtained from fractal dimension𝐷 by the following relation:

𝐻 = 2 −𝐷 (3.5)

if 𝑌 is a self-similar process (MANDELBROT, 1982). The estimates of 𝐻 were made using

the R package fArma, which posses a Higuchi’s method implementation.

3.3 Evaluation Criteria

To evaluate if Hurst’s exponent is preserved after applying the three resample meth-

ods, we analyzed the Error (E) and the Mean Squared Error (MSE). Considering B bootstrap

replicates of 𝜃 (𝜃𝑏), the error estimate is given by:

̂︀𝐸(𝜃) = 𝜃* − 𝜃 (3.6)

where 𝜃* = 1
𝐵

∑︀𝐵
𝑏=1 𝜃𝑏, and 𝜃 is the estimate computed from the original observed

sample.

MSE is an important measure because it incorporates both the variance of the esti-

mator as well as its bias. The MSE considering B bootstrap replicates of 𝜃 can be estimated

from the following procedure:

𝑀𝑆𝐸(𝜃) = 1
𝐵

𝐵∑︁
𝑏=1

(𝜃𝑏 − 𝜃)2 (3.7)

where 𝜃 is, again, the estimate computed from the original observed sample.

3.4 Simulation

To illustrate the performance of the methods in question, we simulated time series

with four characteristics, represented by 𝑋𝑡
*, 𝑌𝑡

*, 𝑍𝑡
* and 𝑊𝑡

*, as follows

𝑌𝑡
* = 4𝑌𝑡 + 𝑡

100 + cos
(︂
𝜋(𝑡− 1)

360

)︂
(3.8)

𝑍𝑡
* = 0.5𝑍𝑡2 + 0.25𝑍𝑡 + 𝑡2

25000 + cos
(︂
𝜋(𝑡− 1)

180

)︂
(3.9)

𝑊𝑡
* = 1.5𝑊𝑡 + cos

(︂
𝜋(𝑡− 1)

180

)︂
(3.10)

wherein,
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• 𝑌𝑡 was generated from a MA(1) with coefficient 𝜃1 = 0.8, that is

𝑌𝑡 = (1 + 0.8𝐵)𝜖𝑡;

• 𝑍𝑡 was generated from a SARIMA(1, 1, 1)(1, 1, 1)12 with coefficient 𝜑1 = 0.5, Φ1 = 0.8,

𝜃1 = 0.6, and Θ1 = 0.3, that is

(1 − 0.5𝐵)(1 − 0.8𝐵12)(1 −𝐵)(1 −𝐵12)𝑍𝑡 = (1 + 0.6𝐵)(1 + 0.3𝐵12)𝜖𝑡;

• 𝑊𝑡 was generated from a ARFIMA(1, 𝑑, 0), wherein 𝜑1 = 0.95 and 𝑑 = 2/5, that is

(1 −𝐵)2/5(1 − 0.95𝐵)𝑊𝑡 = 𝜖𝑡.

The time series 𝑌𝑡
* has a linear trend and periodicity, 𝑍𝑡

* has a nonlinear com-

ponent, with polynomial trend and periodicity, and 𝑊𝑡
* has a seasonal component as a

systematic effect.

The time series 𝑋𝑡
* is a Fractional Gaussian Noise generated from Beran (1994)

algorithm with with 𝐻 = 0.96. Time series generated from 𝑋𝑡
* developed a special role be-

cause with this was possible to evaluate, indeed, the quality of Higuchi’s method to estimate

𝐻.

For each of the four technical features aforementioned, time series of sizes 64, 128,

256, 512, 1024, and 2048 were generated, totaling 24 simulated time series. Each one of

these time series was resampled 5000 times for each of the three analyzed methods. All

the simulation procedure also was developed in the statistical language R.

Figure 3 illustrates time series of length 256 generated from 𝑌𝑡
*, 𝑍𝑡

*, 𝑊𝑡
*, 𝑋𝑡

* at the

graphics (a), (b), (c), and (d), respectively.
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Figure 3 – Time series: (a) generated from 𝑌𝑡
*, (b) generated from 𝑍𝑡

*, (c) generated from
𝑊𝑡

*, (d) generated from 𝑋𝑡
*

From Figure 3 we can observe the behavior of the time series 𝑌𝑡
*, although this time

series was simulated for containing certain periodicity and trend, these behaviors are not so

apparent as showed in this graph in (a). On the other hand, a persistent behavior existent

in the time series constructed from 𝑊𝑡
*, 𝑋𝑡

*, graphics (c) and (d), respectively. Also it is

remarkable the non-linear trend and periodicity in the time series on the graphic (b). Thus,

several behaviors found in the analysis of time series are contemplated in these simulated

time series.

In resampling process was developed in the first level of decomposition for both

detail and wavelet coefficients, using the Daubechies wavelet (DAUBECHIES, 1992), with
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two vanishing moments (d4). Daubechies wavelet (𝑑4) and (𝑑8) has usually been used in

similar works (GOLIA, 2002; TANG; WOODWARD; SCHUCANY, 2008).

3.5 Results

Table 4 describes the estimated value of 𝐻 for each time series generated from 𝑋𝑡
*.

Table 4 – Hurst exponent estimated from Higuchi’s method

Time Series Length 64 128 256 512 1024 2048
Hurst exponent 0.970 0.965 0.965 0.963 0.962 0.960

Clearly, the estimates of 𝐻 are very close to the real value, and as the size of

the time series increases, such values become even closer. Thus, we can notice that the

Higuchi’s method provides reliable estimates for the true measure H used to generate such

time series.

The bias of TSWDWT is described in Figure 4, where we observed small negatives

and positives error values. In general, for TSWDWT, the magnitude of the bias decays to

zero as the size of the time series increases. Especially, for the time series obtained from

𝑍𝑡
*, which contains a nonlinear component, the error presented major magnitude.
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Figure 4 – Replicated time series errors by the TSWDWT method.

Figure 5 presents the error obtained from TSWNDWT method. As in TSWDWT,

positives and negatives error values were observed. However, the magnitudes of these

bias values also decay rapidly to zero for time series with a larger size.
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Figure 5 – Replicated time series errors by the TSWNDWT method.

The naive bootstrap based on NDWT was also evaluated with respect to error as

represented in Figure 6. As in the two others approaches, small values of error were ob-

served decreasing for zero.
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Figure 6 – Replicated time series errors by the naive bootstrap based on NDWT method.

From the error analyzes, the H estimates seem to be preserved after the resampling

methods. The MSE of the methods TSWDWT, TSWNDWT, and naive bootstrap based on

NDWT are represented in the Figure 7, 8, 9, respectively.
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Figure 7 – MSE obtained from TSWDWT method.

From Figure 7 we notice that TSWDWT presents less precision for small time series,

which rapidly decreases while increasing the time series length. The time series generated

from 𝑌𝑡
* and 𝑍𝑡

* are a little more disturbed by the resampling technique for small lengths

as 64.
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Figure 8 – MSE obtained from TSWNDWT method.

TSWNDWT has similar behavior to TSWDWT, as the size of the time series in-

creases the estimates presents more precision. The time series generated from 𝑌𝑡
* presents

a little imprecision for small time series, but, its MSE also tends to zero when this time series

length is increased.
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Figure 9 – MSE from naive bootstrap based on NDWT method.

From Figure 9 we notice that for the generated time series, the precision and ac-

curacy has desirable behavior. In other words, for small time series length, MSE value is

close to zero, and it tends to zero as the size of the time series increases. Less precision is

observed for small time series generated by 𝑌𝑡
*.

From errors and MSE analyzes we observe that the H value before and after resam-

pling are very close. So that the resampling based on wavelets does not seems to disturb

the main behavior of the time series.

3.6 Final considerations

For evaluating if wavelet-based resampling methods preserve the Hurst exponent,

one method based on discrete wavelet transform and two other methods based on non-

decimated wavelet transform were investigated in this paper. The analysis of the H statis-

tics after resampling was evaluated for bootstrapping simulations applied in 24 time series

containing different lengths and characteristics.
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Each evaluated method had a similar behavior with respect to errors and MSE. The

results contained in this paper show that the influence of series length is important in all the

evaluated methods; smaller errors and MSE were observed for larger time series.

We observed that TSWNDWT, TSWDWT, and the naive bootstrap based on NDWT

preserved the main correlation features of the simulated times series. Wavelet-based boot-

strapping become possible to resample correlated data, thus, trajectories of a stochastic

process can be replicated from an observed time series, overcoming the various limitations

on truly observing them.

Higuchi’s method showed up a consistent methodology to estimate the H value for

the time series generated from𝑋*
𝑡 . At the moment, we are comparing the main technique for

estimating Hurst Exponent in Fractional Gaussian Noise, as well as in Fractional Brownian

Motion. The existence of methods to generate such time series from a chosen H value

makes it possible to evaluate the quality of each estimation method.
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Chapter 4

Estimating the Confidence Interval of

Evolutionary Stochastic Process Mean

from Wavelet based Bootstrapping

Abstract

A time series is a realization of a stochastic process, where each observation is consid-

ered in general as the mean of a Gaussian distribution for each time point 𝑡. The classical

theory is built based on this supposition. However, this assumption may be frequently bro-

ken, mainly for non-stationary or evolutionary stochastic process. Thus, in this work we

proposed to estimate the uncertainty for the evolutionary mean, 𝜇𝑡, of a stochastic process

based on bootstrapping of wavelet coefficients. The wavelet multiscale decomposition pro-

vides wavelet coefficients that have less autocorrelation than the observations in time do-

main, allowing to apply bootstrap methodologies. Several bootstrap methodologies based

on discrete wavelet transform (DWT), also called wavestrapping, have been proposed in

the literature to estimate the confidence interval of some statistics for a time series, such

as, e.g., the autocorrelation. In this paper we implemented these methods with few modifi-

cations and compared them to newly proposed methods based on non-decimated wavelet

transform (NDWT), which is a translation invariant transform and more adequate for deal-

ing with time series. Each realization of the bootstrap provides a surrogate time series, that

imitates the trajectories of the original stochastic process, allowing to build a confidence in-

terval for its mean for both stationary and non-stationary processes. As an application, the

confidence interval of the mean rate of bronchiolitis hospitalizations for Paraná-BR state

were estimated as well as its bias and standard errors.



Chapter 4. Estimating the Confidence Interval of Evolutionary Stochastic Process Mean from Wavelet based

Bootstrapping 47

4.1 Introduction

Time series data are naturally found in a range of fields such as Agriculture, Geophysics,

Meteorology, Health, Economy and Social Sciences, among several others (CHATFIELD,

2013; WEI, 1994). Given a parametric space 𝑇 and a probability space (Ω, 𝐴, 𝑃 ), a stochas-

tic process is a family 𝑍 = {𝑍(𝑡), 𝑡 ∈ 𝑇}, such that, for each 𝑡 ∈ 𝑇 , 𝑍(𝑡) is a random

variable (MORETTIN; TOLOI, 2006). A time series is considered as the finite realization of

a stochastic process. In others words, an observed time series is a trajectory of a stochastic

process.

Indeed, 𝑍(𝑡) is a two variable function 𝑍(𝑡, 𝑤) wherein 𝑡 ∈ 𝑇 , and 𝑤 ∈ Ω. Consider-

ing 𝑓𝑍(𝑧) is the probability density function of 𝑍(𝑡, 𝑤), the Figure 10 represents a stochastic

process as aforementioned.

Figure 10 – A stochastic process represented as a family of random variables

In many situations, accessing more than one observation of a phenomenon for each

instant of time is impossible. In general, the function 𝑍(𝑡, 𝑤) is assumed to follow a Gaus-

sian distribution for each instant, and the observed time series represents the mean 𝜇𝑡 of

the stochastic process for each 𝑡 ∈ 𝑇 . But, this assumption not always is true and 𝑓𝑍(𝑧) can

be different at each instant of time. It would be very important to estimate the uncertainty

associated to 𝜇𝑡, from its confidence interval.

The technique called bootstrap (EFRON; GONG, 1983), which is an appropriate

methodology for solving a variety of inferential problems, could be a good alternative to

estimate the uncertainty for 𝜇𝑡. However, bootstrap is more designed for uncorrelated data,

and not for those exhibiting short or long-range dependence as time series. Fortunately, in

the last years, several methods were developed to deal with resampling time series, some
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of them based on wavelets, especially using DWT (PERCIVAL; SARDY; DAVISON, 2000;

GOLIA, 2002; ANGELINI et al., 2005; YI et al., 2007).

To estimate the confidence interval for 𝜇𝑡, we aim to evaluate and implement some

methods from the literature but with some modifications, and propose others involving

NDWT:

M1: Naive bootstrapping based on NDWT;

M2: DWT two step wavestrapping (TSWDWT);

M3: NDWT two step wavestrapping (TSWNDWT);

M4: Reinflation of the bootstrap resamples of TSWDWT.

M5: Reinflation of the bootstrap resamples of TSWNDWT.

The methods M1, M2, M3, M4, and M5, are going to be applied and compared for

estimation of the uncertainty for bronchiolitis hospitalization rate in Paraná State from 2000

to 2014. Bias, standard errors, and coefficients of variation can evaluate the ensembles of

resampled time series.

This work is organized as follows. Section 2 presents a brief review of the techniques

usually used to resample time series. In Section 3, we describe the methods we are using

to estimate the uncertainty associated with the bronchiolitis hospitalization rate. In sections

4 and 5, the main results and conclusions of our study are presented, respectively.

4.2 Resampling time series

One of the most important characteristics of a time series is the dependence on nearby

observations. Because of this correlation structure, maintaining the data order is of great

importance. So, resampling time series requires appropriate techniques that consider the

dependence and the order of the observations. One of the usual approach is the Stationary

Bootstrap (SB) (POLITIS; ROMANO, 1994).

Considering 𝑌𝑡 is a strictly stationary and weakly dependent time series, the SB is

a special case of blocks resampling, which consists in defining two sequences of random

variables 𝐿1, 𝐿2, . . . and 𝐼1, 𝐼2, . . ., both independent of each other and independent of 𝑌𝑡,

and such that 𝐿1, 𝐿2, . . . follow a geometric distribution with parameter 𝑝 and 𝐼1, 𝐼2, . . . follow

an uniform distribution on {1, 2, . . . , 𝑛}. Then, the random blocks 𝐵𝐼𝑖,𝐿𝑖
, with random blocks

length 𝐿𝑖−1, are given by

𝐵𝐼𝑖,𝐿𝑖
= (𝑌𝐼𝑖

, 𝑌𝐼𝑖+1, . . . , 𝑌𝐼𝑖+𝐿𝑖−1). (4.1)
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However, SB is not applicable to those time series exhibiting non-stationary and

long-range dependence.

In the last years, the wavelet analysis has been standing out as a tool for resam-

pling time series (PERCIVAL; SARDY; DAVISON, 2000), (ANGELINI et al., 2005), (BREAK-

SPEAR; BRAMMER; ROBINSON, 2003), (GOLIA, 2002). Basically, considering we have a

multiresolution analyses (MRA) (MALLAT, 1989), a time series 𝑌 = (𝑦0, 𝑦1, · · · , 𝑦𝑛−1) can

be represented as a function 𝑓 in terms of the scaling function 𝜑 and wavelet function 𝜓 as

𝑓(𝑡) =
𝑛−1∑︁
𝑘=0

𝑐𝐽0,𝑘𝜑𝐽0,𝑘(𝑡) +
𝐽−1∑︁
𝑗=𝐽0

𝑛−1∑︁
𝑘=0

𝑑𝑗,𝑘𝜓𝑗,𝑘 (4.2)

where 𝐽 − 1 < log2 𝑛 ≤ 𝐽 , 𝑗 = 𝐽0, · · · , 𝐽 − 1 representing a multiresolution level,

and 𝑘 = 0, · · · , 𝑛 − 1. The coefficients 𝑐𝐽0,𝑘 and 𝑑𝑗,𝑘 are called the smooth (scaling) and

detail (wavelet) coefficients, respectively (KANG; VIDAKOVIC, 2017).

When we take 𝜑𝐽0,𝑘(𝑡) = 2𝐽0/2𝜑(2𝐽0𝑡 − 𝑘) and 𝜓𝑗,𝑘(𝑡) = 2𝑗/2𝜓(2𝑗𝑡 − 𝑘), the coef-

ficients 𝑐𝐽0,𝑘 and 𝑑𝑗,𝑘 comprise the DWT of the time series 𝑌 . On the other hand, taking

𝜑𝐽0,𝑘(𝑡) = 2𝐽0/2𝜑(2𝐽0(𝑡 − 𝑘)) and 𝜓𝑗,𝑘(𝑡) = 2𝑗/2𝜓(2𝑗(𝑡 − 𝑘)), the detail and smooth coeffi-

cients represent the NDWT of the time series 𝑌 .

The DWT wavelet coefficients have less autocorrelation than the observed time se-

ries, and this allows applying bootstrap (wavestrap), even for non-stationary time series

(GOLIA, 2002; YI et al., 2007; TANG; WOODWARD; SCHUCANY, 2008). However, in con-

ditions where translation or shift-invariance (NASON; SILVERMAN, 1995) is important, as

for time series, the NDWT is a good alternative.

One difficulty in applying bootstrap on DWT is the number of wavelet coefficients

which becomes smaller at each resolution level. NDWT has the same number of wavelet

coefficients in each resolution level, overcoming this DWT limitation. NDWT is also more

flexible with respect to the time series length, being appropriate for all those which are

a multiple of two. Furthermore, NDWT has an easy implementation with more than one

algorithm, including the pyramidal algorithm (MALLAT, 1989).

4.2.1 Bootstrap based on wavelets

Golia (2002) applied the stationary bootstrap to the wavelet coefficients of time series ex-

hibiting long memory (GOLIA, 2002). This application was possible because the wavelet

coefficients are wide-sense stationary and weakly correlated in each scale (WORNELL;

OPPENHEIM, 1996). In her work, she used the Daubechies wavelet with 4 vanishing mo-

ments and coarsest level of details equals to 4 in DWT. The results were good, however, the

author comments the need of evaluating this approach for other long memory processes.

The procedure of this wavelet based stationary bootstrap is described in Figure 11 .
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Figure 11 – Wavelet based stationary bootstrap

Considering the SB and its use combined with wavelets, Yi et al. (2007) developed

a DWT-based method called of Two-Step Wavestrapping (TSW), to simulate non-stationary

acceleration data in the mobile computing context (YI et al., 2007). In this context, they

intended to simulate the acceleration data collected of a group composed by one hundred

twenty six undergraduate students. In this sort of data, each student provides one time

series for each one of the three evaluated axis forming a group of time series. Each group

of time series was divided into subgroups statistically characterized by Hurst exponents,

and then TSW procedure is applied by subgroups.

Describing TSW for only one time series, the first part of the TSW consists on per-

forming the SB in one-step of DWT, which is called of Stationary Parallel Bootstrapping. In

other words,

1. Given a time series 𝑌 of power-of-two length, apply the DWT to generate the coarsest

level of detail (𝐽0) and scale coefficients;

2. Resample these scaling and wavelet coefficients using the Stationary Bootstrap (POLI-

TIS; ROMANO, 1994);

3. Apply the inverse discrete wavelet transform (IDWT) to the resampled wavelet co-

efficients to generate a surrogate time series 𝑌𝑏, wherein 𝑏 indicates the performed

bootstrap.

The second step consists in adjusting the trend and energy. For trend adjustment,

both the time series 𝑌 and its surrogate 𝑌𝑏 are decomposed using the DWT. Then, the scal-

ing coefficients 𝑐𝑏 obtained from 𝑌𝑏 are surrogated by the scaling coefficients 𝑐 generated

from 𝑌 . For the energy adjustment, the following steps can be performed:

i. Generate the average energy for each decomposition level of 𝑌 and 𝑌𝑏, given by

𝑒𝑗 =
2𝑗−1∑︁
𝑘=0

𝑑𝑗,𝑘
2𝑗

2
, 𝑗 = 𝐽0, · · · , 𝐽 − 1, (4.3)
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where 𝑑𝑗,𝑘 is the 𝑘th wavelet coefficient in the 𝑗th decomposition level.

ii. Adjust the average energy for each decomposition level of 𝑌𝑏 to the average energy

of the levels of 𝑌 , doing

𝑑𝑏𝑎𝑗,𝑘 = 𝑑𝑏𝑗,𝑘

√︃
𝑒𝑗
𝑒𝑏𝑗
, (4.4)

where 𝑑𝑏𝑎 represents the adjustment realized in each decomposition level of 𝑌𝑏;

Figure 12 – Two step wavestrap (TSW) algorithm

Figure 12 summarizes the TSW algorithm. An important contribution of this method-

ology is the idea of an energy adjustment in the levels to preserve the inherent variability

of the original data, even after the resampling. Furthermore, each realization of this pro-

cedure provides a surrogate time series with the same feature of the original time series.

Another important point, is that the vertical correlation of wavelet coefficients among scale

levels was taken into account, since the scaling and wavelet coefficients were resampled

together.

In the next section, we present the proposed bootstrap methods, that are based on

NDWT, SB, and TSW of the wavelet coefficients.

4.3 Proposed Methods

Using the statistical language R (R Core Team, 2016), we implemented five methods

to generate the proposed confidence interval for 𝜇𝑡.
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The first bootstrap technique consists in performing a decomposition of the time

series using NDWT, applying the naive bootstrap to detail coefficients and then generating

a surrogate time series using INDWT. Figure 13 presents the NDWT naive algorithm.

Figure 13 – Naive bootstrap based on NDWT

The next approaches were implemented following the same steps as TSW. The

first one, called of TSWNDWT, follows the same steps of TSW but replacing the DWT by

NDWT. In the second step, we work only with NDWT coefficients that comprise the first level

of details. As in TSW we also developed the trend and energy adjustment as described in

subsection 4.2.1. Figure 14 describes the TSWNDWT algorithm.

The method called of TSWDWT follows the same steps of TSWNDWT, but the

decomposition and reconstruction of the time series is performed using DWT. The latest

approaches consists in reinflating the surrogate time series obtained from TSWDWT and

TSWNDWT. In the literature, reinflation means multiplying the correlation factor correction√
1.1 to the surrogate time series (TANG; WOODWARD; SCHUCANY, 2008).
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Figure 14 – TSWNDWT algorithm

To illustrate the confidence interval of the evolutionary stochastic process mean we

used the month rate of bronchiolitis hospitalizations time series from the Paraná State - BR,

in the period from 2000 to 2014. This time series was collected from DATASUS database

and contains 180 observations.

The resampling methods based on DWT require data of power-of-two size. So, we

extend the time series by reflection to 256 observations.

For each one of the proposed method, we fixed the orthonormal Daubechies’ wavelet

(DAUBECHIES, 1992), with 2 vanishing moments (𝑑4). This family of wavelets has been

frequently used in similar works (GOLIA, 2002; TANG; WOODWARD; SCHUCANY, 2008).

Furthermore, to obtain the mean of the sthocastic process 𝜇𝑡, the level mean of the time

series, standard errors and bias we resampled the time series 5000 times for each one of

the proposed methods.

4.4 Results

Figure 15 presents the time series of the rate of monthly hospitalizations for bron-

chiolitis (𝑌 ), and the mean of the group of surrogate time series for 𝑌 from each presented

bootstrap method.
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Figure 15 – Averages of the surrogate time series: Y - rate of bronchiolitis time series, M1
- naive bootstrap based on NDWT, M2 - TSWNDWT, M3 - TSWDWT, M4 -
reinflated TSWNDWT and M5 - reinflated TSWDWT.

From Figure 15 all the bootstrap means seems to be similar to the observed time

series. We can also generate the standard errors of the surrogate time series, as presented

in Figures 16 and 17.
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Figure 16 – Standard errors of surrogate time series: M1 - naive bootstrap based on NDWT,
M2 - TSWNDWT, and M4 - reinflated TSWNDWT.

We can see that the naive bootstrap based on wavelet, TSWNDWT, and reinflated

TSWNDWT methods presented low variability, whereas TSWDWT, and reinflated TSWDWT

standard errors present a high level of oscillation. Possibly this behavior is related to the

number of coefficients in each decomposition level. While the number of coefficients in

each level of NDWT remains the same as the observed time series, in DWT, the number of

coefficients decreases by half in each level. In general, the TSWNDWT presented the best

standard errors and coefficient of variation.

The averages of the standard errors, coefficient of variation, and bias are repre-

sented in Table 5. The results corroborate with the graphical analyzes, pointing the TSWNDWT

as the method with the smallest variability.
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Table 5 – Average of standard errors (SE), coefficient of variation (CV) and bias of the sur-
rogate time series

Classes NDWT TSWNDWT TSWDWT Reinflated Reinflated
bootstrap TSWNDWT TSWDWT

SE 0.63 0.61 0.90 0.64 0.95
CV 11.23 10.79 16.05 10.79 16.05
Bias 2.74 × 10−5 −7.72 × 10−6 6.15 × 10−5 −2.74 × 10−1 −2.74 × 10−1

The results in Table 5 also corroborates with the Figure 17 indicating the largest

variability for the methods that use DWT.

We also can see that the naive bootstrap based on wavelet, TSWNDWT, and rein-

flated TSWNDWT average bias are smaller than those for TSWDWT and reinflated TSWDWT

methods. The TSWNDWT presented the best average of bias, which is about −0.000008.
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Figure 17 – Standard errors of surrogate time series: M3 - TSWDWT, and M5 - reinflated
TSWDWT.

Figures 18 and 19 present the bias of the mean of the surrogate time series for each

one of the evaluated methods. As in the standard errors analyze, the naive bootstrap based
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on wavelet, TSWNDWT, and reinflated TSWNDWT methods presented best results. On the

other hand, TSWDWT and reinflated TSWDWT bias reached largest values.
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Figure 18 – Bias: M1 - naive bootstrap based on NDWT, M2 - TSWNDWT, and M4 - rein-
flated TSWNDWT.
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Figure 19 – Bias: M3 - TSWDWT, and M5 - reinflated TSWDWT.

In the Figures 20, 21, 22, 23, and 24 the confidence interval for the rate bronchiolitis

hospitalizations time series obtained from each discussed method are presented. In all

graphs, the time series 𝑌 is represented as a black dotted line and the confidence interval

are a red line.

Figure 20 presents the confidence interval generated from the naive bootstrap based

on NDWT. The CI constructed from this method included almost all the values of the ob-

served time series, which represents the mean of the stochastic process.
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Figure 20 – Confidence interval (CI) obtained from naive bootstrap for the rate of bronchi-
olitis hospitalizations time series (TS)

From Figure 21 one can observe the confidence interval generated from TSWNDWT.

This method also includes almost all the values of that observed time series, but we can

observe that this interval is little more narrow than the in the confidence interval using only

naive NDWT bootstrap.
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Figure 21 – Confidence interval obtained from TSWNDWT

Figure 22 presents the confidence interval generated from TSWDWT. The CI ob-

tained from this method contains the most part of the observed values, and it seems to

have less point out of the interval than the two methods already analyzed. However, each

one of the time series that compose the confidence interval has more noise than those

obtained from naive NDWT bootstrap and TSWNDWT.

The presence of more noise in the confidence interval generated from TSWDWT is

expected since this method based on DWT seems to present more variability, bias, besides

fewer wavelet coefficients in each multiresolution level to be resampled.
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Figure 22 – Confidence interval obtained from TSWDWT

Figure 23 presents the confidence interval generated from reinflated TSWNDWT.

The CI obtained from this method contains almost all the observed process values, and a

few outside points. In general, we observe that the methods based on NDWT have a similar

behavior.
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Figure 23 – Confidence interval obtained from reinflated TSWNDWT

In Figure 24, the confidence interval generated from the reinflated TSWNDWT are

represented. The CI obtained from this method also contains almost all the observed pro-

cess values, but as in TSWDWT, the time series that compose the confidence interval are

more noisy than those NDWT based methods.

In general, the built confidence intervals include almost all the time series values that

represent the mean of the stochastic process. But, when the bronchiolitis hospitalizations is

hight producing spikes in the time series, mainly in May of 2012 and June 2014 the CI does

not contain the time series values.
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Figure 24 – Confidence interval obtained from reinflated TSWDWT

Although all the methods contain observed points that are not inside of the confi-

dence intervals, those based on NDWT have less outside points. The TSWNDWT share

more interesting results presenting low variability and the smaller bias.

4.5 Final considerations

The difficulty or impossibility in accessing more than one trajectory in a stochastic

process such as the monthly rate of bronchiolitis hospitalizations is well known. Providing

a method to estimate the uncertainty associated with the evolutionary stochastic process

mean without considering the presupposition of normality is a challenging problem. With the

presented possibilities, this problem can be taken into account from wavelet-based boot-

strapping.

All the evaluated methods provide a measure of the confidence interval of the mean

𝜇𝑡 for the monthly hospitalization rate for bronchiolitis via wavelet decomposition using the

Daubechies’ wavelet 𝑑4. At the moment, we are analyzing these methods considering dif-

ferent wavelet families and vanishing moments, as well as other time series with diverse



Chapter 4. Estimating the Confidence Interval of Evolutionary Stochastic Process Mean from Wavelet based

Bootstrapping 64

behaviors and lengths. In the literature, the usual methods for resampling time series are

based on DWT. In this work, we observed that NDWT provides good estimates, with the

smallest standard errors and coefficient of variations.

The generation of the confidence interval for 𝜇𝑡 can also be used to estimate the

uncertainty for wavelet regression models, since they also represents of the mean of a

stochastic process.
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Chapter 5

Final considerations

In the development of this dissertation, firstly, it was possible to access many impor-

tant time series characteristics. In a second moment, concepts of wavelet analysis and their

applications to time series analysis were reviewed. And finally, the combination of these two

areas in order to perform the resampling of time series.

In chapter 2 some considerations were made on the estimation of the Hurst ex-

ponent. It shows how important is to know the various arguments involved in the use of

empirical estimation methods.

In order to estimate the uncertainty associated with the evolutionary mean of a

stochastic process, five methods of resampling were investigated, they are naive boot-

strap based on NDWT, TSWDWT, TSWNDWT, and the reinflated versions of TSWDWT,

and TSWNDWT. All these methods combines the wavelet transform with bootstrap meth-

ods. Furthermore, these methods were used for resampling simulated time series, and the

preservation of the Hurst statistic, MSE and bias were investigated. The estimated values of

the Hurst exponent of the time series obtained by the bootstrap simulation were very close

to those observed in the original time series. In this sense, the values of the bias and MSE

were close to zero, especially for larger time series.

Considering the five evaluated methods, in chapter 3, a confidence interval for the

time series of bronchiolitis hospitalization rate in Paraná State from 2004 to 2014 was es-

timated. The bronchiolitis is an infectious respiratory disease more frequent in children, in

the first year of life (AMANTÉA; SILVA, 1998). Due to lack of particular vaccines and the fact

the available drugs are of high cost and/or short effectiveness, estimating the uncertainty of

this data is very important to understand indirectly the behavior of respiratory syncytial virus

(RSV), the main causer of bronchiolitis, which may help the public health managers in tak-

ing the best decisions related, e. g., in medicine administration. Furthermore, because the

non-stationary of these time series is important to emphasize that classical approaches as
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SARIMA model could not be applied (GIMENES, 2015). On the other hand, wavelet-based

methods have been shown an adequate methodology for dealing with this feature.

The estimated mean for the stochastic process, which has bronchiolitis hospitaliza-

tion rate time series as the evolutionary mean, by using the bootstrap methods, presented

similar behavior than the observed bronchiolitis time series. Furthermore bias, standard er-

rors are close to zero. The CI constructed for bronchiolitis hospitalization rate time series,

in general, contemplated the main features of this time series. In addition, only few outside

points have been observed, and TSWNDWT presented the best average of bias.

Analyzing all methods we have observed that the choice of wavelet function and

number of vanishing moments have developed important aspects. Changing the wavelet

function or the vanishing numbers we can obtain more or less extrapolations in the confi-

dence interval. Another point is to analyze more current and efficient methods for estimating

the Hurst exponent as Beran et al. (2013), Kang and Vidakovic (2017), Feng and Vidakovic

(2017). These choices are topics for future studies.
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