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Resumo
A pandemia de COVID-19 criou um dilema na sociedade, no qual a aplicação de medidas de
saúde pública e restrições devem ser balanceadas com suas consequências econômicas. Para
guiar as decisões durante a crise, um dos indicadores mais comuns usados por governos é o
número reprodutivo (𝑅). Na Suíça os efeitos da pandemia não foram diferents do resto da
Europa. Para ajudar durante a crise, o governo suíço criou a força tarefa de ciência suíça de
COVID-19 (NCS-TF) cujo o grupo de modelagem e dados é responsável por produzir estimati-
vas para 𝑅. Diversas abordagens para a estimação do número reprodutivo foram desenvolvidas
e aplicadas à outras epidemias. O método da NCS-TF é baseado nos desenvolvimentos de Cori
et. al. 2013 e o pacote do R "EpiEstim". Esse projeto utiliza uma abordagem Bayesiana para
estimar o número reprodutivo na Suíça e em outros países. Ele se difere da abordagem atual
pois estima a curva de incidência e os padrões semanais no mesmo algorítmo de Metropolis-
Hastings. Apesar do maior tempo computacional em relação ao método da força tarefa Suíça,
o uso de Splines como priori para 𝑅 resultou em intervalos de confiança mais precisos em
períodos de alta variação dos casos. Esse resultado foi expressivo se compararmos as estima-
tivas no casos do Brasil na qual os intervalo de confiança do método utilizado trás uma maior
segurança para as decisões governamentais.

Keywords: Algorítmo Metropolis-Hastings, COVID-19, Estimação Bayesiana, Número Repro-
dutivo.



Abstract
The COVID-19 pandemic created a harsh dilemma for our society, in which the application of
public health measures and restrictions has to be balanced with their economic consequences.
To guide decisions during this crisis, one of the main indicators used by governments is the
reproductive number (𝑅). In Switzerland, the effects of the pandemic have not been different
from the rest of Europe. To help during this crisis the Swiss government created the NCS-TF
(Swiss National Covid-19 - Science Task Force) whose data and modelling group is responsible
for producing estimates of 𝑅. Several approaches for the estimation of the reproductive num-
ber have been developed and applied in other epidemics. The NCS-TF method is based on the
developments of Cori et. al. 2013 and the R package EpiEstim. This project uses a Bayesian
approach to estimate the reproduction number in Switzerland and other countries. This differs
from the current approach in the sense that estimates of the weekly patterns and the incidence
curve are found using the same Metropolis–Hastings algorithm. Despite the longer computa-
tional effort compared to the NCS-TF, the use of splines as a prior for 𝑅 resulted in narrower
and more precise confidence intervals in periods of high variation on reported cases. This result
is more evident in the estimates for Brazil, in which our method gives the decision–maker a
narrower interval to decide on the implementation of public policies.

Keywords: Bayesian estimation, COVID-19, Metropolis–Hastings algorithm, Reproductive
number.
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Chapter 1

Introduction

1.1 A brief COVID-19 timeline: World, Switzerland and Brazil

• On 1 January 2020, the WHO requested information on the reported cluster of atypical
pneumonia cases in Wuhan from the Chinese authorities and eight days later it was
reported by Chinese authorities that the outbreak was caused by a novel coronavirus.
The first mission to Wuha conducted by the WHO n occurred on 20-21st January 2020.

• Between 11th and 12th of February 2020 the WHO conduced a Global Research and
Innovation Forum on the novel coronavirus, with participation by more than 300 experts
and funders from 48 countries. Topics covered by the Forum included: the origin of
the virus, its natural history, transmission and diagnosis; epidemiological studies; clinical
characterisation and management; infection prevention and control; R&D for candidate
therapeutics and vaccines; ethical considerations for research; and the integration of the
social sciences into the response.

• Twelve days after the Forum, the WHO-China Joint Mission reported in a press confer-
ence that “much of the global community is not yet ready, in mindset and materially, to
implement the measures that have been employed to contain COVID-19 in China” and
that “to reduce COVID-19 illness and death, near-term readiness planning must embrace
the large-scale implementation of high-quality, non-pharmaceutical public health mea-
sures”, such as case detection and isolation, contact tracing and monitoring/quarantining
and community engagement.

• On 25 February 2020, Switzerland confirmed the first case of COVID-19 and on the
next day the Brazilian Ministry of Health confirmed the first case in Brazil and Latin
America. Four days later, the 100,000th case in the world was confirmed and the WHO
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officially characterised COVID-19 as a pandemic. Unlike its Brazilian counterpart, the
Swiss government response was fast, banning all events with more than 1000 participants
early on.

• On 12 March 2020, the first death was registered in Brazil. On the next day Europe
was declared by the WHO to have become the epicentre of the pandemic, with more
reported cases and deaths than the rest of the world combined, apart from China.

• On 2 April 2020 the WHO reported evidence of transmission from pre-symptomatic
and asymptomatic people infected with COVID-19, noting that transmission from a pre-
symptomatic case can occur before symptom onset. This helps explain the fast dynamics
of the spread of the disease. Two days later, the mark of 1 million cases worldwide was
confirmed with more than a tenfold increase of cases in less than a month.

• On the 10th of April, Brazil reached 1,000 deaths from COVID-19. The next day the
WHO published a draft landscape of COVID-19 candidate vaccines, on the basis of a
systematic assessment of candidates from around the world.

• On the 19th of June 2020, Brazil reached one million COVID-19 cases. A diverse set
of treatments was still under discussion. However, on 4th of July WHO announced
that hydroxychloroquine and lopinavir/ritonavir were found to be ineffective regarding
COVID-19 treatment and studies were discontinued. In the same month the 2020 edition
of the UN’s State of Food Security and Nutrition in the World was published, which
forecaste that the COVID-19 pandemic could leave over 130 million more people in
chronic hunger by the end of the year.

• On the 8th of August, Brazil reached three million cases and 100,000 deaths from
COVID-19. On the 11th of November, the Brazilian Health Regulatory Agency authorized
Sinovac to resume its vaccine trials less than 48 hours after halting the tests, which are
being conducted by the Butantan Institute in the state of São Paulo.

• On the 23th of December of 2020 the Swiss vaccination campaign started.

• After more than a year of the pandemic, on the 5th of January 2021 the WHO’s Strategic
Advisory Group of Experts on Immunization (SAGE) reviewed the vaccine data for the
Pfizer/BioNTech vaccine and formulated policy recommendations on how best to use
it. The vaccine was the first to receive an emergency use validation from WHO for
efficacy against COVID-19. Two days later Brazil reached 200,000 deaths from COVID-
19, according to data from the state health secretariats.

• On the 14th of January the hospital system in Manaus, the capital of the state of
Amazonas, started collapsing from the second wave of COVID-19 and ran out of oxygen.
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On the same day the world surpassed two million COVID-19 deaths. Three days later,
the Brazilian Health Regulatory Agency unanimously authorized the emergency use of
the Corona Vac and Oxford vaccines. The state of São Paulo started vaccination against
COVID-19 for health professionals at the University of São Paulo Faculty of Medicine
Clinical Hospital. By the second week of February, Brazil reached five million people
vaccinated in all 26 states and the Federal District, according to data from the state
health secretariats.

COVID-19 response
The COVID-19 pandemic will impact our society for years to come. Although we have

had pandemics with similar characteristics before, the combination of different aspects of this
pandemic makes it unique. For example, in the last 150 years we had the Spanish flu (1918–
1919) and the Russian flu (1889–1990), which were greater or equal in size, but during those
periods the world was less connected than it is today. Also, they were caused by a different
virus (influenza), though it should be mentioned that studies have opened the discussion of the
origin of the Russian flu from a coronavirus (Vijgen et al., 2005). Regarding recent events such
as Ebola (2013), MERS(2012), H1N1 (2009) and Zika (2015), none had the same impact as
COVID-19, even though our planet was intensely globalised.

During a pandemic epidemiologists and biostatisticians need to work with economists
and other specialists to help guide public policy and discussions at the highest levels of gov-
ernments about how to balance the necessity of harsh sanitary measures (e.g., lockdown) and
the need to maintain the economy to avoid a financial crisis. The Disease Control Priorities
Network comments on the balance between health and the economy, saying that high costs
may occur as a result of interventions (such as quarantines and school closures) that lead to
economic disruption. These interventions may be more cost-effective during a severe pandemic
(Madhav et al., 2017).

As commented in the timeline above, right from the start of the outbreaks the WHO
warned about the importance of non-pharmaceutical interventions (NPIs). These are actions,
unlike getting vaccinated or taking medicine, that people and communities can take to help
slow the spread of diseases. The efficacy of the implementation of these policies varies greatly
between different cultures and governments they should be tailored to each situation and the
progression of the disease. Some examples are closing schools and childcare facilities, requir-
ing use of masks in public transport, banning events with a number of people, encouraging
home-office, closing bars and cancelling social events. It is important that these policies are
implemented early, mainly due to the efficiency of early actions, but also to avoid any catas-
trophe in the health systems that also have to deal with other issues that will continue to
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Figure 1.1.1 – A bill of mortality for the City of London, England, for the week of 26 September
to 3 October 1665. This photograph was taken by Claire Lees at the Guildhall
in London, England, with the permission of the librarian

occur during the pandemic. Figure 1.1.1 is a bill of mortality for the City of London during
the plague, which gives us a morbid reminder of this fact.

To assess if the situation can be considered a severe pandemic, one option is to look at
how the numbers of cases are progressing. Even if the disease has a relatively low case fatality
rate, e.g., according to Liang et al. (2020) that of COVID-19 is around 3.7% , it can have a
significant impact in society when the whole population is affected. The main indicator of the
progression of the disease is the reproductive number 𝑅, which measures how many people
an infected person is going to affect during his or her infective cycle, and is a crucial input to
policy-making.

This project discuss the current approach used by the Swiss National Covid-19 - Sci-
ence Task force (NCS-TF) and develops a different method considering both the cases and the
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infections, reconstructing the incidence curve in the same algorithm that estimates the repro-
duction number. The method is then applied to Switzerland and others countries to compare
to the NCS-TF approach. Chapter 2 contains a brief literature review of epidemiological mod-
els and estimation of the reproduction number. Chapter 3 comments on the data used and
discusses the methods applied to the data. The results are discussed in Chapter 4.
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Chapter 2

Literature Review

2.1 Epidemiologcal Models
The first known application of a compartmental epidemic model was by Daniel Bernoulli

in 1760. His model divided the population into susceptible and immune compartments and
assumed an age-specific force of infection and case fatality rate, yielding a system of equations
with an endemic equilibrium of susceptible and immune individuals. His motivation was similar
to that of disease studies today, to predict the expected gain in life expectancy that would
be brought about by applying smallpox control measures. Since variolation1 was becoming
widespread in Europe in the late 1700s, predicting the resulting increase in life expectancy
would have been important for pricing annuities (Allen et al., 2008).

The transmission mechanism from an infective person to a susceptible person is understood
for nearly all infectious diseases and the spread of diseases through a chain of infections is
known. However, the transmission interactions in a population are very complex, so it is difficult
to comprehend the large-scale dynamics of disease spread without the formal structure of a
mathematical model. Instead of focusing on every interaction an epidemiological model tries to
model the macroscopic behaviour of disease spread through a population (Levin et al., 2012).
In certain communities it is possible to contain the spread of a disease by contact tracing
and testing every individual, but this is logistically almost impossible after there is evidence of
community transmission;

After Bernoulli, almost no significant work was done in epidemiological modelling for more
1 Variolation was one of the first methods to intentionally create immunization in an individual. There were

several types of procedure but the general idea was to take a scab of smallpox from a recently variolated
patient, and by several methods such as exposing it to vapour or drying to create a milder infection that
would result in the immunization of the patient. Luckily we live in a post-smallpox world where the last
case was registered in 1978 in the United Kingdom.
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than 100 years. However in the mid-nineteenth to the early twentieth centuries, the subject
was studied by a number of authors who wrote papers on mathematical and statistical models
for various types of infectious diseases. At this time it was already suspected that the density
of susceptibles was an important quantity in the models. As Hirsch claimed in 1883, “the
recurrence of the epidemics of measles at one particular place is connected neither with an un-
known something (the mystical number of the Pythagoreans), nor with ‘general constitutional
vicissitudes’, as Kostlin thinks; but it depends solely on two factors, the time of importation
of the morbid poison, and the number of persons susceptible of it” (Soper, 1929).

The modelling of diseases during that period was mostly focused on an intriguing ques-
tion that would arise to anyone that studied a little about disease during that period, “What
causes the recurrences of disease?”. There were at least two competing hypotheses regarding
the causes of recurrence. Scientists such as Brownlee hypothesized that seasonal recurrence in
diseases such as measles was simply due to seasonal variation in pathogen virulence (Brown-
lee, 1906). By comparison, scientists such as Hamer and Davidson sought an endogenous
explanation for recurrence. They suggested that it is unnecessary to invoke seasonal variation
in host or pathogen properties and that this property would arise normally from appropriate
modelling (Hamer, 1906) . More specifically, Hamer hypothesized the concept that would be
later known as the mass-action mixing assumption, in which the incidence is proportional to
the product of the densities of susceptible and infected individuals. This concept is also used
in chemical reactions, whose rates depend on the concentrations of the elements involved.

Unlike in chemistry and other sciences, it is impossible and unethical to conduct experiments
regarding the spread of infectious diseases in human populations. Data are sometimes available
from naturally occurring epidemics or from the natural incidence of endemic diseases; but it is
often incomplete due to under-reporting, and the COVID-19 data are not different. This lack of
reliable data makes accurate parameter estimation difficult. Since repeatable experiments and
accurate data are usually not available in epidemiology, mathematical models and computer
simulations are used to perform the needed theoretical experiments. (Levin et al., 2012)

Compartmental models simplify the mathematical modelling of infectious diseases by putting
individuals into categories. Every person is assigned to a compartment. In one of the most
famous models, the SIR models, individuals receive the labels, S, I, or R:

• Susceptible (S): individuals who have no immunity to the infectious agent, so might
become infected if exposed;

• Infectious (I): individuals who are currently infected and can transmit the infection to
susceptible individuals whom they contact;
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• Removed (R): individuals who are immune to the infection, and consequently do not
affect the transmission dynamics in any way when they contact other individuals.

The total host population (𝑁) size is the sum of all the compartments. If the disease is
not deadly and ignoring demographics, the population is assumed to be constant, so

𝑁 = 𝑆 + 𝐼 + 𝑅.

People may progress between compartments, and the order of the labels usually shows
the flow patterns between the compartments; for example SEIS means susceptible, exposed,
infectious, then susceptible again. The models are most often run with ordinary differential
equations (which are deterministic), but can also be used in a stochastic (random) framework.
The numbers of individuals in each compartment must be integers, of course, but if the host
population size N is sufficiently large we can treat 𝑆, 𝐼 and 𝑅 as continuous variables and
express our model for how they change in terms of a system of differential equations.

An underrecognized value of epidemiological modeling is that it leads to a clear statement
of the assumptions about the biological and sociological mechanisms which influence disease
spread. The parameters used in an epidemiological model must have a clear interpretation
such as a contact rate or a duration of infection. Models can be used to assess many quan-
titative conjectures. For example, one could check a conjecture that AIDS incidence would
decrease if 90% of the sexually active heterosexual population started using condoms consis-
tently. Epidemiological models can sometimes be used to predict the spread or incidence of a
disease (Levin et al., 2012).
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2.1.1 SIR Models

Figure 2.1.1 – Compartments of a SIR model

Having compartmentalised the host population, we need a set of equations that specify
how the sizes of the compartments change over time. Solutions of these equations will give
𝐼(𝑡), which is the size of the infectious compartment at time t. The quality of the model can
be judged by how well a plot of 𝐼(𝑡) resembles the real epidemic curve.

A common initial assumption is to not consider “vital dynamics”, i.e., births and deaths.
SIR models can be defined by the following ordinary differential equations

𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼,

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝜇𝐼,

𝑑𝑅

𝑑𝑡
= 𝜇𝐼,

where

𝑡 is a unit of time, commonly days;

𝑆 is the number of individuals who have no immunity to the infectious agent, so might
become infected if exposed;

𝐼 is the number of individuals who are currently infected and can transmit the infection to
susceptible individuals whom they contact;

𝑅 is the number of individuals who are immune to the infection, and consequently do not
affect the transmission dynamics in any way when they contact other individuals;

𝛽 is the transmission rate per capita;

𝜇 is the recovery rate.
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Figure 2.1.2 – Evolution of sizes of compartments in a SIR model in time, starting with 1000
susceptible individuals.

Figure 2.1.2 illustrates one example of how these equations can represent a epidemic with
a initial population of 1000 susceptible individuals.

If we expand the SIR model to include 𝐵 births per unit time and a natural mortality rate
𝛾 (per capita) then our equations become

𝑑𝑆

𝑑𝑡
= 𝐵 − 𝛽𝑆𝐼 − 𝜇𝑆,

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝜇𝐼 − 𝛾𝐼,

𝑑𝑅

𝑑𝑡
= 𝜇𝐼 − 𝛾𝑅, 𝑡 > 0.

The necessity to add demographic information to the models depends mostly on the incu-
bation period of the disease and the size of the serial interval. Demographic aspects can be
ignored for diseases with a short cycle such as the flu, but for a virus such as HIV that can
have a survival time of 11 years on average without treatment it would be best to include this
information in the model.
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SIS model

Another common introductory model is the SIS epidemic model, in which a susceptible
individual, after a contact with an infectious individual, becomes infected and infectious, but
does not develop immunity. Thus, infected individuals return to the susceptible class after
recovery. A obvious assumption is that there are no disease-related deaths. The compartmental
diagram is also very simple; see Figure 2.1.3

Figure 2.1.3 – Compartments of a SIS Model

This model can be applied to diseases such as the common cold, depending on the number
of deaths in the season. If we want to include vital dynamics in the model, the equations
become

𝑑𝑆

𝑑𝑡
= 𝐵(𝑁) − 𝛽(𝑁)𝑆𝐼 − 𝛾𝑆 + 𝑓𝛼𝐼,

𝑑𝐼

𝑑𝑡
= 𝛽(𝑁)𝑆𝐼 − 𝛾𝐼 − 𝜇𝐼, 𝑡 > 0,

where

𝑓 is the fraction of infectives recovering with no immunity against reinfection;

𝛼 is the rate of recovery from infection;

𝐵 is births as a function of the number of individuals.
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2.1.2 SEIR Models
The SIR model was a initial step for the development of epidemiological models. After

that initial idea several other models were derived to be more specific to certain diseases.
For example, some diseases have a significant time between contact with the virus and the
infection itself. With this observation in the real world a model with a period considering
the individual as exposed (𝐸) between susceptible and infectious would be appropriate. Such
models are called SEIR models. Figure 2.1.4 illustrates the different stages.

Figure 2.1.4 – Compartments of a SEIR Model

For the SEIR compartmental model the set of differential equations is

𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼,

𝑑𝐸

𝑑𝑡
= 𝛽𝑆𝐼 − 𝜖𝐸,

𝑑𝐼

𝑑𝑡
= 𝜖𝐸 − 𝜇𝐼,

𝑑𝑅

𝑑𝑡
= 𝜇𝐼, 𝑡 > 0.
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2.1.3 Tailor-made models
Considering how diversely a disease can manifest itself and spread, it is not uncommon to

develop tailor-made models for a specific important case. One example of those models for
COVID-19 can be seen in the paper “Extensions of the SEIR model for the analysis of tailored
social distancing and tracing approaches to cope with COVID-19” from Grimm et al. (2021).
In this paper they add compartments to the SEIR model in order to better differentiate the
individuals in the population. These compartments allow them to incorporate different parame-
ters that represent important aspects about COVID-19 in a individual immunological response,
such as young, old, vulnerable, non-vulnerable, recovered, dead, asymptomatic, symptomatic
and severe cases. Thus, transforming the SEIR model into what they named SEI3RD, resulted
in the equations

𝑑𝑆𝑘

𝑑𝑡
= −

𝑘∑︁
𝑙=1

(𝛽𝑎𝑠𝑦𝑚
𝑙𝑘 𝐼𝑎𝑠𝑦𝑚

𝑙 + 𝛽𝑠𝑦𝑚
𝑙𝑘 𝐼𝑠𝑦𝑚

𝑙 + 𝛽𝑠𝑒𝑣
𝑙𝑘 𝐼𝑠𝑒𝑣

𝑙 )𝑆𝑘,

𝑑𝐸𝑘

𝑑𝑡
= −

𝑘∑︁
𝑙=1

(𝛽𝑎𝑠𝑦𝑚
𝑙𝑘 𝐼𝑎𝑠𝑦𝑚

𝑙 + 𝛽𝑠𝑦𝑚
𝑙𝑘 𝐼𝑠𝑦𝑚

𝑙 + 𝛽𝑠𝑒𝑣
𝑙𝑘 𝐼𝑠𝑒𝑣

𝑙 )𝑆𝑘 − 𝜖𝑘𝐸𝑘,

𝑑𝐼𝑎𝑠𝑦𝑚
𝑘

𝑑𝑡
= 𝜂𝑘𝜖𝑘𝐸𝑘 − 𝛾𝑎𝑠𝑦𝑚𝐼𝑎𝑠𝑦𝑚

𝑘 ,

𝑑𝐼𝑠𝑦𝑚
𝑘

𝑑𝑡
= (1 − 𝜂𝑘)(1 − 𝜈𝑘)𝜖𝑘𝐸𝑘 − 𝛾𝑠𝑦𝑚𝐼𝑠𝑦𝑚

𝑘 ,

𝑑𝐼𝑠𝑒𝑣
𝑘

𝑑𝑡
= (1 − 𝜂𝑘)𝜈𝑘𝜖𝑘𝐸𝑘 −

(︁
(1 − 𝜎𝑘(𝑡))𝛾𝑠𝑒𝑣−𝑟

𝑘 + 𝜎𝑘(𝑡)𝛾𝑠𝑒𝑣−𝑑
𝑘

)︁
𝐼𝑠𝑒𝑣

𝑘 ,

𝑑𝑅𝑘

𝑑𝑡
= 𝛾𝑎𝑠𝑦𝑚𝐼𝑎𝑠𝑦𝑚

𝑘 + 𝛾𝑠𝑦𝑚𝐼𝑠𝑦𝑚
𝑘 + (1 − 𝜎𝑘(𝑡))𝛾𝑠𝑒𝑣−𝑟

𝑘 𝐼𝑠𝑒𝑣
𝑘 ,

𝑑𝐷𝑘

𝑑𝑡
= 𝜎𝑘(𝑡)𝛾𝑠𝑒𝑣−𝑑

𝑘 𝐼𝑠𝑒𝑣
𝑘 , 𝑘 = 1, ..., 𝐾,

where

𝐾 = number of groups;

𝑁𝑘 = total number of individuals in group 𝑘;

𝑆𝑘 = susceptible individuals in group 𝑘;

𝐸𝑘 = exposed individuals in the latent period in group 𝑘;

𝐼𝑎𝑠𝑦𝑚
𝑘 = asymptomatic infectious individuals in group 𝑘;

𝐼𝐼𝑠𝑦𝑚
𝑘 = symptomatic infectious individuals in group 𝑘;
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𝐼𝑠𝑒𝑣
𝑘 = severely symptomatic infectious individuals in group 𝑘;

𝑅𝑘 = recovered individuals with immunity in group 𝑘;

𝐷𝑘 = dead individuals in group 𝑘;

𝜂𝑘 = fraction of asymptomatic infectious individuals;

𝜈𝑘= fraction (of Isymk) of severely symptomatic infectious individuals;

𝜎𝑘 = lethality rate conditional on severe infection;

𝛽𝑎𝑠𝑦𝑚
𝑘𝑗 , 𝛽𝑠𝑦𝑚

𝑘𝑗 , 𝛽𝑠𝑒𝑣
𝑘𝑗 = group-specific infection rates.

At first glance these ordinary differential equations look complex, but they do not differ from
the initial concept of compartmentalising the population into groups and estimate the infectious
period, recovery time and other parameters that are present in the original SEIR model.This
model allowed the group to simulate different scenarios of intervention measurements and to
estimate important information for policymakers, for example, the probable number of deaths
and required ICU capacity.
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2.2 Reproductive number
The reproduction number 𝑅0 is a key epidemiological variable to guide decisions during

a pandemic. If a compartmental model is used it can be obtained from the set of ordinary
equations. Considering a SIR compartmental model and supposing that at 𝑡 = 0 the number of
susceptibles is equal to the total population 𝑆 = 𝑁 , then the first infected person introduced
to the system will be expected to infect other individual at the rate 𝛽𝑁 during the expected
infectious period, 1/𝛾. Thus, we obtain

𝑅0𝑆𝐼𝑅
= 𝛽𝑁

𝛾
.

When referring to the reproduction number is important to make a distinction between
the basic reproduction number and the effective reproduction number. The latter can be
defined as the instantaneous reproductive number or as the case reproductive number (Gostic
et al., 2020). Those different quantities may look similar but conceptually they are significantly
different.

The basic reproduction number, 𝑅0, is defined as the expected number of secondary cases
produced by a typical primary case in an entirely susceptible population (Dietz, 1993). This is
an epidemiological metric used to describe the contagiousness or transmissibility of infectious
agents. It is affected by numerous biological, sociobehavioral and environmental factors that
govern pathogen transmission and, therefore, is usually estimated with various types of complex
mathematical models, which make 𝑅0 easily misrepresented, misinterpreted, and misapplied
(Delamater et al., 2019).

When infection is spreading through a population, it is often more convenient to work
with the effective reproduction number 𝑅, which is defined as the actual average number of
secondary cases per primary case. This is typically smaller than 𝑅0, and it reflects the impact
of control measures and depletion of susceptible persons during the epidemic. If 𝑅 exceeds 1,
the number of cases will inevitably increase over time, and a large epidemic is possible. To
stop an epidemic, 𝑅 needs to be persistently below 1 (Wallinga and Teunis, 2004).

The case reproductive number is useful for retrospective analyses of how individuals infected
at different time points contributed to spreading the disease.The instantaneous reproductive
number is more appropriate for estimating the reproductive number of the infected population
on specific dates, especially when aiming to study how interventions or other extrinsic factors
have affected transmission (Gostic et al., 2020). One useful analogy is to think about the
instantaneous reproductive number as the life expectancy when a person is born, and the case
reproductive number as the number of years this person will eventually live.
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2.2.1 Instantaneous reproductive number
The instantaneous reproductive number involves fewer assumptions about the future than

does the case reproduction number, making it more appropriate to real-time estimation. The
method from Cori et al. (2013) has been applied in several epidemics in which 𝑅𝑡 is estimated
as

𝑅𝑡 = 𝐼𝑡

𝑡∑︀
𝑠=1

𝐼𝑡−𝑠𝑤𝑠

,

where 𝐼𝑡 is the number of new infections on day 𝑡 and 𝑤𝑠 is the generation interval. This
estimator describes the ratio between the number of new infections on a day relative to
the number of infections and the infectivity profile of the cases on previous days. The usual
assumption is that 𝑤𝑠 is given by a discretized gamma distribution.

2.2.2 Case reproductive number
The case reproductive number, sometimes called the cohort reproductive number, is the

expected number of secondary infections that an individual will eventually cause. The proposed
method by Wallinga and Teunis (2004) is to calculate the likelihood that a case 𝑗 was infected
by case 𝑖 relative to the likelihood that 𝑖 was infected by other cases. Using pairs of cases was
the innovative idea on their approach. They obtained the ratio

𝑝𝑖𝑗 = 𝑤(𝑡𝑖 − 𝑡𝑗)∑︀
𝑖 ̸=𝑘

𝑤(𝑡𝑖 − 𝑡𝑘) ,

so the individual reproductive number of the case 𝑗 is

𝑅𝑗 =
∑︁

𝑖

𝑝𝑖𝑗.

They also assume that the generation interval follows a discretised gamma distribution.

2.3 Serial interval and generation interval distributions
In most methods for estimating 𝑅, one necessary input is information regarding the infec-

tiouness of the disease, normally in the form of the generation interval or serial interval. The
generation interval is the time between infection of the host and that of a second case. This
applies to both clinical cases and unidentified infections. With person-to-person transmission
of infection, the interval between cases is determined by the generation time. The serial inter-
val is the period of time between analogous phases of an infectious illness, in successive cases
of a chain of infection that is spread from person to person (Porta, 2014).
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As Svensson (2007) points out, other terms are also used, such as transmission time or
transmission interval. Although the term generation interval is frequently used, it is more
common to observe the serial interval, since it is easier to identify symptom onset and hospi-
talisation than the time of infection (Kenah et al., 2008).

Misspecification of the generation interval is a large potential source of over- or under-
estimation, and estimates of 𝑅𝑡 are most prone to this kind of bias when the true value is
substantially greater or less than one (Gostic et al., 2020).

2.4 Reconstruction of the infection incidence curve
One problem in dealing with real-world data is the reconstruction of the incidence curve.

Methods for 𝑅𝑡 estimation are based on the knowledge of the epidemic curve, which in general
is unobserved.

The data generally available concern the symptom, report, hospitalisation or death curves,
which do not represent our input of interest (the incidence curve) because the infections are
blurred in time owing to variation amongst individuals. For example, supposing symptoms of
a certain disease takes 5 days on average to manifest, not all individuals infected at time 𝑡

will be identifiable by their symptoms at time 𝑡 + 5 and thus our symptom curve will be a
smoothed representation of the incidence curve. For some infections (e.g., HIV), diagnostic
symptoms (i.e., AIDS-defining illness) may occur years after infection, so the symptom curve
is a poor reflection of the evolution of the epidemic (Goldstein et al., 2009).

Naive approaches for dealing with observation delays, such as subtracting delays sampled
from a distribution, can introduce bias (Gostic et al., 2020). The most recommended method
to obtain the epidemic curve is that of Goldstein et al. (2009), who applied the Richardson–
Lucy deconvolution to the influenza epidemic of 1918. In real-world data it is important to
understand that the existence of super-spreaders can generate anomalies in the initial days of
the epidemic (Wallinga and Teunis, 2004).
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2.5 Swiss - COVID19 - Discussion
Switzerland is a unique country in many aspects. It is located in the centre of Europe but

is not part of the European Union, has three official languages, has 25% foreigners in its popu-
lation and several other characteristics that make it unique. It has borders with Liechtenstein,
France, Germany, Austria and Italy, which was one of the European countries most impacted
by the first wave of COVID-19. Due to cross-border commuters and its dependence on workers
from France and Italy, a total closure of its borders was not an option. But nevertheless, several
public health measures and restrictions were implemented in the first wave. These measures
and their timing can be seen in Figure 2.5.1 .

Figure 2.5.1 – Implementation and removal of COVID-19 restrictions in Switzerland by health
authorities. Source:Swiss National Covid-19 - Science Task Force (https://ncs-
tf.ch/en/situation-report). Accessed:15/11/2020

Even with restrictions and campaigns to inform the public, Switzerland was not spared
from the first wave of the COVID-19, though it had a better pandemic response than most
of its neighbours. The second wave in October was more severe, having days with more than
10,000 new COVID-19 cases, as can be seen in Figure 2.5.2.
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Figure 2.5.2 – Number of daily confirmed cases of COVID-19 in Switzerland

The NCS-TF is responsible for guiding the government in several aspects of the pandemic,
such as testing and the progression of the disease. The data modelling group generates daily
updates of the 𝑅𝑡 estimates which can be seen in Figure 2.5.3. Their updates have been a
fundamental part of the government’s response and decisions about the implementation of
restrictions. However, one thing that catches the eye at first glance of their 𝑅𝑡 estimation is
the huge confidence intervals, which will be one of the topics discussed in this project.

Figure 2.5.3 – 𝑅 estimates for Switzerland by the NCS-TF for 2020 based on reported cases,
deaths and hospitalizations. Source:Swiss National Covid-19 - Science Task
Force (https://ncs-tf.ch/en/situation-report) Accessed:15/11/2020
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Chapter 3

Methods

3.1 Data
When a new disease starts, the research and medical community has to put in place

infrastructure that allows epidemiologists to estimate the reproduction number. For example,
at the moment there are two tests that are used to identify cases, the rapid diagnostic test
(RDT) which is colloquially called "the antibody test" and the PCR test that detects the
presence of the RNA of the virus. Having such tests widely available in a small time frame
is already a tremendous achievement for the scientific community. To achieve this different
aspects of the disease are studied in order to develop each test with its specific characteristics.

RT-PCR test

The RT-PCR test (Reverse transcription polymerase chain reaction) detects the presence
of viral RNA. It is known to have be very accurate and efficient. Although the this test can
be costly compared to the antigen test, it is able to detect a COVID-19 infection even before
the person becomes infectious and will allow early isolation. Thus, this method is able to
prevent the transmission of the virus to other hosts. There is also the discriminant PCR which
is performed on positive samples and allows to determine whether it is a specific mutation for
which the discriminant test is designed.

Rapid antigen test

The rapid antigen test is cheaper than the PCR test but it is also not as accurate because
it need high concentrations of the proteins during the infection to detect it. This test does
not require specialised staff and can give results within 30 minutes. Another disadvantage is
that a significant percentage of those infected pass the test as a false negative. In a few days,
these people will spread the virus among others, thinking they are healthy.
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Antibody test

This test measures antibodies to the SARS-CoV-2 virus in the bodies of people who have
already had COVID-19 or are successfully recovering from the disease. Antibodies are not
present at the onset of the disease.

Figure 3.1.1 – Different types of COVID-9 tests Source: NIPD Genetics

After a reliable method for identification of the disease has been put in place it is possible
to have a time series of confirmed infections. In some diseases if the symptoms are evident
enough it is possible to create this time series for confirmed infections, hospitalisations and
deaths using only medical observation.

3.1.1 Swiss data
The data for Switzerland are obtained from the Federal Office of Public Health (FOPH),

which collects the data from several cantonal authorities and compiles them to know the total
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cases in Switzerland which will be later used by the Swiss Covid-19 task force. The time series
of cases and deaths can be seen in Figure 3.1.2. Before doing any estimation or statistical
analysis there is information we can obtain just by looking at the graph.

We can see that Switzerland had a first wave, and after public authorities took action the
cases got under control. There is also the possibility that testing was not so widespread in
the first wave as in the second wave, which caused the first wave to be considerably smaller
than the first, but this is just a initial guess from the time series. Countries may have different
patterns in the time series of infections, and in Switzerland it is very clear that the country
has a weekend pattern.

During the first wave doctors had to learn to treat patients with COVID-19, so the fatality
rate in later months of the pandemic should be lower if everything else stays the same, and
this may explain why the peaks for deaths are similar in Figure 3.1.2 but the cases are very
different. However, we also have to consider that in the first wave testing was not as widespread
as in the second and there is a possibility that Switzerland was not identifying as many cases
as it was during the second wave. This illustrates how hard it is to understand the underlying
process that are resulting in these variations of cases and deaths during the pandemic only
looking at cases and deaths. The same results can be caused by different phenomena.

3.1.2 Brazilian data

Figure 3.1.3 – – Number of cases and death for the 1st and 2nd wave of COVID-19 in Brazil
Source: https://covid.saude.gov.br/. Accessed:06/04/2021
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Figure 3.1.2 – Number of cases and deaths for COVID-19 in Switzerland based on data re-
ported from the Federal Office of Public Health

Brazil is a particular country when we refer to the pandemic; it has had four health ministers.
The initial handling by Luiz Henrique Mandetta saw national cohesion of the fight against
COVID-19, but after he was fired most of the work was left to the states and the country
lacked a centralised organ to deal with the epidemic. The data that we are using is from
the website "https://covid.saude.gov.br/" which gathers the information from the 26 states
and compiles it every day, updating it at 7PM (GMT-3). This is the current official source,
however due to the lack of centralised governance during the handling of the pandemic the
media created a group to gather the data from different states and publish it every day at 8PM.
The mainstream media groups participating are the G1, O Globo, Extra, Estadão, Folha and
UOL, who cite the constant attacks on the media from the current president Jair Bolsonaro
as the main reason for the necessity of an independent count of the COVID-19 cases.

Unlike Switzerland, in Brazil the difference between the first and the second wave is not
so clear. This can be due to several reasons: one possibility is how the virus dispersed in the
country, so that when some states were starting to reduce the number of cases others were
just being introduced to the virus. Another point is that the case time series definitely have a
weekend pattern but this is not specific to Brazil.
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3.1.3 Other countries
The method developed here was also applied to other countries, but we did not use the data

directly from official state sources, but from the COVID-19 Data Repository by the Center for
Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). In the beginning
of the pandemic their dashboard was used widely, but it is be useful to check the data source
if you want to analyse specific countries. For example, there is a clear difference in the data
from JHU and the FOPH if we look at Switzerland: the first has no cases reported at the
weekends.

3.2 Estimation Methods
Several approaches for the estimation of 𝑅𝑡 have been developed, and due to the com-

plexity surrounding this epidemiological problem it is important to understand the underlying
assumptions when applying those different methods. For example, Bettencourt and Ribeiro
(2008) derived a method based on a SIR model which assumes that the generation interval
follows a exponential distribution, but this is not the case with COVID-19 and several other
diseases. This assumption was one of the main reasons reported by Gostic et al. (2020) for
bias in their estimation of 𝑅𝑡, though they point out that if adapted this method can produce
smoother estimates than Cori’s method due to the penalisation of jumps in 𝑅𝑡.

Another method frequently used is from Wallinga and Teunis (2004), who showed that
the relation between the reproduction number and the epidemic curve is determined by the
generation interval. However, this method is not recommended for real-time estimation since
it requires incidence data from times later than the moment it is trying to estimate.

The method most applied for real-time estimation of the effective reproduction number,
comes from the paper “A New Framework and Software to Estimate Time-Varying Reproduc-
tion Numbers During Epidemics”. Gostic et al. (2020) concluded in their analyses that this is
the best method for near real-time estimation.

This method starts from the assumption that the distribution of infectiousness is inde-
pendent of calendar time and models transmission with a Poisson process. The number of
infections on day 𝑡 depends on the infections in previous days, the reproductive number and
the infectiousness profile, which is generally assume to be gamma distributed. So the number
of new cases 𝑥𝑡+1 on day 𝑡 + 1 given the past is distributed as

𝑥𝑡+1 ∼ 𝑃𝑜𝑖𝑠(𝑅𝑡

𝑡∑︁
𝑠=0

𝑤𝑠𝑥𝑡−𝑠).



Chapter 3. Methods 31

Also, the conditional distribution of the incidence 𝐼𝑡 at time 𝑡 is

𝑃 (𝐼𝑡 | 𝐼0, ..., 𝐼𝑡−1, 𝑤, 𝑅𝑡) =

(︂
𝑅𝑡

𝑡∑︀
𝑠=0

𝑤𝑠𝑥𝑡−𝑠

)︂𝐼𝑡

𝑒
−𝑅𝑡

𝑡∑︀
𝑠=0

𝑤𝑠𝑥𝑡−𝑠

𝐼𝑡!
.

The next step is to assume that the transmissibility is constant over a period [𝑡 − 𝜏 + 1; 𝑡], so
the likelihood of incidence during this period is

𝑃 (𝐼𝑡−𝜏+1, ..., 𝐼𝑡 | 𝐼0, ..., 𝐼𝑡−𝜏 , 𝑤, 𝑅𝑡,𝜏 ) =
𝑡∏︁

𝑠=𝑡−𝜏+1

(︂
𝑅𝑡

𝑡∑︀
𝑠=0

𝑤𝑠𝑥𝑡−𝑠

)︂𝐼𝑡

exp
(︂

−𝑅𝑡

𝑡∑︀
𝑠=0

𝑤𝑠𝑥𝑡−𝑠

)︂
𝐼𝑡!

.

With the equation above and using a Bayesian framework we obtain the following posterior
distribution, assuming for the prior 𝑃 (𝑅) a gamma distribution,

𝑃 (𝐼𝑡−𝜏+1, ..., 𝐼𝑡, 𝑅𝑡,𝜏 | 𝐼0, ..., 𝐼𝑡−𝜏 , 𝑤) = 𝑆1 exp (𝑆2)𝑆3,

in which to ease the notation we used the terms 𝑆1, 𝑆2, 𝑆3 that replaced

𝑆1 = 𝑅

(︂
𝑎+

𝑡∑︀
𝑠=𝑡−𝜏+1

𝐼𝑠−1
)︂

𝑡,𝜏 ,

𝑆2 = −𝑅𝑡,𝜏

(︂ 𝑡∑︁
𝑠=𝑡−𝜏+1

Λ𝑠 + 1
𝑏

)︂
,

𝑆3 =
𝑡∏︁

𝑠=𝑡−𝜏+1

Λ𝐼𝑠
𝑠

𝐼𝑠!Γ(𝑎)𝑏𝑎
.

The method above is used by the Swiss National Covid-19 Task Force to estimate the values of
𝑅𝑡 for Switzerland, using the standard values for the prior gamma distribution in the package
EpiEstim (Mean = 5, Standard deviation = 5). Their results can be found in Sciré et al.
(2020).

3.3 Project Objectives
Considering the impact of the COVID-19 and the possibility of new pandemics in the

future, works to improve the estimation of the effective reproduction to orient governmental
decisions are in high demand. Aligned with this necessity it may be possible to improve the
confidence intervals used by the Swiss task force. Our proposed method differ from the Task
force because it considers the weekly patterns and the reconstruction of the incidence curve in
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the same Metropolis-Hastings algorithm. Thus, it may be possible to have a better estimation,
considering that we are estimating everything at once (𝑅𝑡, weekly patterns and infections)
while the Task Force does these steps separately.

The goal of this project is to estimate the effective reproduction number of COVID-19
in Switzerland and compare to the method from the NCS-TF. For this to be achieved we
present some of the methodologies in use and apply our method that will be discussed further
to simulated and real data. This project is part of a larger group project at the EPFL. The
project included six master’s students and was supervised by Professor Anthony C. Davison
and Hélène Ruffieux. My studies were funded for 10 months by EPFL and I stayed in Lausanne
working in the Department of Mathematics with the Chair of Statistics. There were weekly
meetings on Mondays in which the students presented important papers and the results of
different approaches for the estimation of the reproductive number. These approaches included
a frequentist method using Generalized Additive Models (GAMs) and other Bayesian methods
using the software STAN.

3.4 Project’s Approach

3.4.1 Estimation of 𝑅𝑡

Considering 𝑌𝑡 as the number of cases at day 𝑡, which is a fraction of the number of
infections 𝑋𝑡 on the same day and assuming a Poisson distribution for both, the number of
cases and infections on day 𝑡 + 1 depends on the number of cases in the previous days and is

𝑥𝑡+1 | 𝑥1, . . . , 𝑥𝑡 ∼ Pois(Δ𝑡),

𝑦𝑡+1 | 𝑦1, . . . , 𝑦𝑡 ∼ Pois(𝜇𝑡),

where

𝑅𝑡 is the reproduction number;

𝑤𝑠 is a discretized gamma distribution with mean = 5.3 and sd =3.2;

Δ𝑡 = 𝑅𝑡−1
𝑡−1∑︀
𝑠=0

𝑤𝑠𝑥𝑡−𝑠−1;

𝜇𝑡 =
𝑡−1∑︀
𝑠=0

𝑎𝑠𝑥𝑡−𝑠−1.

The values for the distribution were taken from Linton et al. (2020), who studied the
distribution for COVID-19 in the early pandemic.

The joint distribution of 𝑥, 𝑦 for a fixed 𝑅 is
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𝑓(𝑥, 𝑦 | 𝑅) =
𝑛∏︁

𝑡=2

⎛⎝(Δ𝑡−1)𝑥𝑡𝑒−Δ𝑡−1

𝑥𝑡!
(𝜇𝑡−1)𝑦𝑡𝑒−𝜇𝑡−1

𝑦𝑡!

⎞⎠.

The joint distribution for 𝑌 and 𝑋 is used as part of Bayes Theorem to obtain the distribution
for 𝑃 (𝑅 | 𝑦, 𝑥),

𝑃 (𝑅|𝑦, 𝑥) = 𝑃 (𝑦, 𝑥|𝑅)𝑃 (𝑅)
𝑃 (𝑦, 𝑥) ∝ 𝑃 (𝑦, 𝑥|𝑅)𝑃 (𝑅).

In this Bayesian framework we still lack a prior distribution for 𝑅. Considering the nature of
the problem at hand we do not expect that the reproduction number will vary wildly in a brief
period of time nor do we expect any discontinuity. Thus, one of the desired characteristics of
our distribution for 𝑅 is dependence between neighbouring days, which we will impose with
our prior. This will be achieved by writing 𝑅𝑡 as a combination of splines and coefficients to be
estimated. Thus, a brief discussion of splines is necessary. For more details on splines the source
material for this subsection are the books “Generalized Additive Models: an introduction with
R” from Wood (2017) and “Splines and PDEs: From approximation theory to numerical linear
algebra” from Kunoth et al. (2018).

3.4.2 Splines
A spline is a function defined piecewise by polynomials. In interpolating problems, spline

interpolation is often preferred to polynomial interpolation because it yields similar results,
even when using low degree polynomials. Also the ease with which splines can be stored and
evaluated on a computer makes them powerful for a variety of applications. In general, a
function defined on an interval [𝑎, 𝑏] is defined as a polynomial spline of degree 𝑘, having
knots 𝑥1, ..., 𝑥𝑛, if the following three conditions hold:

1. 𝑎 < 𝑥1 < · · · < 𝑥𝑛 < 𝑏, so the knots 𝑥1, ..., 𝑥𝑛 partition the interval [𝑎, 𝑏] into 𝑛 + 1
smaller subintervals;

2. in each subinterval [𝑥𝑖, 𝑥𝑖 + 1], the spline is given by a polynomial function of at most
degree 𝑘; and

3. the spline and its derivatives up to order 𝑘 − 1 are all continuous on [𝑎, 𝑏].

The points at which the sections join are known as the knots of the spline. Typically the knots
would either be evenly spaced through the range of observed 𝑥 values, or placed at quantiles
of the distribution of unique 𝑥 values.

Cubic Splines
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Consider a set of points {𝑥𝑖, 𝑦𝑖 : 𝑖 = 1, ..., 𝑛} where 𝑥𝑖 < 𝑥𝑖+1. The cubic spline, 𝑔(𝑥),
interpolating these points, is a function made up of sections of cubic polynomial, one for
each [𝑥𝑖, 𝑥𝑖+1], which are joined together so that the whole spline is continuous to its second
derivative, while 𝑔(𝑥𝑖) = 𝑦𝑖 and 𝑓 ′′(𝑥1) = 𝑓 ′′(𝑥𝑛) = 0. The spline that has zero second
derivatives at the end knots is a “natural spline”.

B- Splines

To efficiently deal with splines, one needs a suitable basis for their representation. B-splines
stands out as one of the most useful spline basis functions. Any spline 𝑔(𝑥) of degree 𝑘 can
be written as a linear combination of B-splines 𝐵𝑖(𝑥):

𝑔(𝑥) =
∑︁

𝑖

𝑎𝑖𝐵𝑖(𝑥),

where each B-spline 𝐵𝑖(𝑥) is a spline of degree 𝑘. B-splines permit the efficient evaluation of
a spline and its derivatives because they have local support, in other words, outside a small
range, they take the value of zero. To define a 𝑘-parameter B-spline basis, we need to define
𝑘 + 𝑛 + 1 knots, 𝑥1 < 𝑥2 < · · · < 𝑥𝑘+𝑛+1, where the interval over which the spline is to be
evaluated lies within [𝑥𝑛+2, 𝑥𝑘] (so that the first and last 𝑛 + 1 knot locations are essentially
arbitrary). An (𝑛 + 1)th order spline can then be represented as

𝑔(𝑥) =
𝑘∑︁

𝑖=1
𝐵𝑚

𝑖 (𝑥)𝛽𝑖,

where the B-spline basis functions are most conveniently defined recursively as follows,

𝐵𝑚
𝑖 (𝑥) = 𝑥 − 𝑥𝑖

𝑥𝑖+𝑚+1−𝑥𝑖

𝐵𝑚−1
𝑖 (𝑥) + 𝑥𝑖 + 𝑚 + 2 − 𝑥

𝑥𝑖+𝑚+2 − 𝑥𝑖+1
𝐵𝑚−1

𝑖+1 (𝑥), 𝑖 = 1, ..., 𝑘,

and

𝐵−1
𝑖 (𝑥) =

⎧⎨⎩ 1, 𝑥𝑖 ≤ 𝑥 < 𝑥𝑖+1,

0, otherwise.

With this we can return to our problem of creating a dependence structure in the repro-
ductive number. We can then use a B-spline basis and estimate the coefficients associated
with this basis. Let 𝑀 be a joint matrix with the elements of the first column equal to one
and the other columns filled by the spline basis with degree 𝑞 − 1,

𝑀𝑛,𝑞 =

⎛⎜⎜⎜⎜⎜⎜⎝
1 𝐵1 · · · 𝐵𝑞

1 𝐵1 · · · 𝐵𝑞

... ... . . . ...
1 𝐵1 · · · 𝐵𝑞

⎞⎟⎟⎟⎟⎟⎟⎠ .
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Also, we define 𝛾 as a single column matrix with length equals to the number of days in our
data, in which its element are the 𝛽 coefficients to be estimated

𝛾𝑞,1 =

⎛⎜⎜⎜⎜⎜⎜⎝
𝛽0

𝛽1
...

𝛽𝑞

⎞⎟⎟⎟⎟⎟⎟⎠ .

Thus, we write the reproduction number as the product 𝑅 = 𝑀𝛾. For the splines basis
we used equally spaced splines and varied the number of them to analyse how well they can
capture the variation between days.

3.4.3 Weekly Pattern
There is still one important aspect to add to the model, which is how to deal with the

weekly patterns that frequently appear. For this we use the fact that the cases 𝑦𝑡 reported on
day 𝑡 are actually a combination of cases from previous days. Furthermore, not all cases on
day 𝑡 will be reported on this day. Thus, for each day of the week we have a vector of delay
probabilities 𝑃 𝑑𝑎𝑦 that will distribute the cases of this day to the following days. For example,
assuming that 50% of the cases occur on Sunday will be reported on Monday, 20% on Tuesday,
20% on Wednesday and the rest 10% on Sunday it self, the vector of delay probabilities for
Sunday would be

𝑃 𝑆𝑢𝑛𝑑𝑎𝑦 = (0.1, 0.5, 0.2, 0.2, 0.0, 0.0, 0.0).

We then have a 7 × 7 matrix that maps the reporting delays from every day of the week to
another. Some elements of the matrix are expected to be 0, because it would be unlikely that
a case on Monday will be reported on Sunday. To illustrate this the following matrix is an
example of a 1-day delay pattern.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑀 𝑇𝑢 𝑊 𝑇ℎ 𝐹 𝑆𝑎 𝑆𝑢

1 − 𝑃 𝑀−→𝑇 𝑢 𝑃 𝑀−→𝑇 𝑢 0 0 0 0 0
0 1 − 𝑃 𝑇 𝑢−→𝑊 𝑃 𝑇 𝑢−→𝑊 0 0 0 0
0 0 1 − 𝑃 𝑊−→𝑇 ℎ 𝑃 𝑊−→𝑇 ℎ 0 0 0
0 0 0 1 − 𝑃 𝑇 ℎ−→𝐹 𝑃 𝑇 ℎ−→𝐹 0 0
0 0 0 0 1 − 𝑃 𝐹−→𝑆𝑎 𝑃 𝐹−→𝑆𝑎 0
0 0 0 0 0 1 − 𝑃 𝑆𝑎−→𝑆𝑢 𝑃 𝑆𝑎−→𝑆𝑢

𝑃 𝑆𝑢−→𝑀 0 0 0 0 0 1 − 𝑃 𝑆𝑢−→𝑀

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



Chapter 3. Methods 36

Using this we can rewrite the average of the Poisson distribution for 𝑌𝑡 as a linear combi-
nation of previous days,

𝜇𝑡+1 =
𝐷∑︁

𝑑=1
𝜇′

𝑡+1−𝑑𝑃 𝑡+1−𝑑
𝑑 .

Thus, we use this weighted averaged of reported cases in our algorithm accounting for reporting
delays.
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3.5 Computational Methods

3.5.1 Markov Chain Monte Carlo (MCMC)
Markov Chain Monte Carlo (MCMC) methods are a class of algorithms that allow you to

sample from a probability distribution. The idea is that you can construct a Markov chain that
has the target sampled distribution as its equilibrium. Ideally you can start from a point in the
chain and take random steps that can be accepted or not depending on the target distribution
and as you take more steps you get closer to the target distribution. Next we present a few
important concepts to know before working with MCMC methods, this topic was based on the
books “Monte Carlo Statistical Methods” by Robert and Casella (2013) and “Markov Chain
Monte Carlo in Practice” by Gilks et al. (1996), which can be consulted for more explanation.

3.5.1.1 Definitions

To talk about MCMC it is important to have some definitions regarding a few properties
of the Markov Chain 𝑋𝑛.

Transition Kernel - A transition kernel is a function 𝐾(𝑥, 𝐴) that for 𝑥 ∈ 𝜒 and the
state-space 𝑆 belonging to the Borel set of 𝜒 in other words, 𝑆 ∈ B(𝜒), satisfies

1. For all 𝑥 ∈ 𝜒, 𝐾(𝑥, ·) is a probability measure;

2. For all 𝐴 ∈ B(𝜒), 𝐾(·, 𝐴) is measurable,

where B(𝜒) represents the Borel sets of 𝜒. In the cases where 𝜒 is discrete the kernel is a
transition matrix 𝐾 with elements

𝑃𝑥𝑦 = 𝑃 (𝑋𝑛 = 𝑦 | 𝑋𝑛−1 = 𝑥), 𝑥, 𝑦 ∈ 𝜒.

Markov chain - Given a transition kernel 𝐾, a sequence 𝑋0, 𝑋1, ..., 𝑋𝑛 of random
variables are a Markov chain, denoted by 𝑋𝑛, if, for any 𝑛, the conditional distribution of 𝑋𝑛

given 𝑋𝑛−1, 𝑋𝑛−2, . . . , 𝑋0 is the same as the distribution of 𝑋𝑛 given 𝑋𝑛−1. This means that
the probability of the next element on the sequence depends only on the current point of the
sequence of random variables, or in a more formal statement,

𝑃 (𝑋𝑛+1 ∈ 𝐴 | 𝑥𝑜, 𝑥1, ..., 𝑥𝑛) = 𝑃 (𝑋𝑛+1 ∈ 𝐴 | 𝑥𝑛) =
∫︁

𝐴
𝐾(𝑥𝑛, 𝑑𝑥).

The chain is time-homogeneous if the distribution of (𝑋𝑛1 , ..., 𝑋𝑛𝑘
) is the same as the distri-

bution of (𝑋𝑛1−𝑛0 , 𝑋𝑛2−𝑛0 , ..., 𝑋𝑛𝑘−𝑛0) for any 𝑛0.

Irreducibility - In the discrete case, the chain is irreducible if all states communicate,
namely if
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𝑃𝑥(𝜏𝑦 < inf) > 0, 𝑥, 𝑦 ∈ 𝜒,

𝜏𝑦 being the first time 𝑦 is visited. Irreducibility is important because it tells us if the Markov
chain is sensitive to the initial conditions and it guarantees convergence.

Transience and recurrence

Although irreducibility guarantees that every set 𝐴 will be visited by the Markov chain 𝑋𝑛,
this property is too weak to tell us how often the trajectory of 𝑋𝑛 will enter 𝐴 . In a finite
state-space 𝑆, a state 𝜔 ∈ 𝑆 is transient if the average number of visits to 𝜔, E[𝜈𝜔] is finite,
and recurrent if E[𝜈𝜔] = ∞ .

In the discrete case, the recurrence of a state guarantees its return. For irreducible chains,
recurrence and transience are properties of the chain, not of a particular state.

Reversibility - A Markov chain is reversible if the direction of time has no effect on its
dynamics. In other words 𝑋𝑡+1 conditional on 𝑋𝑡+2 = 𝑥 has the same distribution as 𝑋𝑡+1

conditional on 𝑋𝑡 = 𝑥.

Ergodic - A state 𝜔 is said to be ergodic if it is aperiodic and positive recurrent. This
mean that we are certain to revisit this state in the future, which guarantees convergence to
the desired distribution. If all states in an irreducible Markov chain are ergodic, then the chain
is said to be ergodic.

Markov Chain Monte Carlo - A Markov chain Monte Carlo (MCMC) method for the
simulation of a distribution 𝑓 is any method producing an ergodic Markov chain 𝑋𝑛 whose
stationary distribution is 𝑓 .
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3.5.2 Metropolis–Hastings Algorithm
There are several Markov Chain Monte Carlo methods commonly used in statistics, such as,

Hamiltonian Monte Carlo (HMC), slice sampling and the Metropolis–Hastings (MH) algorithm
that was used in this project. The Metropolis–Hasting algorithm is a type of Markov Chain
Monte Carlo method that is used to sample from distributions that are hard to sample. The
MH algorithm is normally used for multi-dimensional distributions, while for single dimensions
there are simpler algorithms.

The algorithm starts with the target density 𝑓 . A conditional density 𝑞(𝑦 | 𝑥), defined with
respect to the dominating measure for the model, is then chosen. The Metropolis–Hastings
algorithm can be implemented in practice when 𝑞(ů | 𝑥) is easy to simulate from and is either
explicitly available (up to a multiplicative constant independent of 𝑥) or symmetric; that is,
such that 𝑞(𝑥 | 𝑦) = 𝑞(𝑦 | 𝑥). The target density 𝑓 must be available to some extent: a
general requirement is that the ratio 𝑓(𝑦)/𝑞(𝑦 | 𝑥) is known up to a constant independent of
𝑥 (Robert and Casella, 2013).

The general concept of this algorithm is that the probability of acceptance of a distribution
depends on the position we are in the sample space and where we want to move to next. The
idea is that we write this acceptance in order to be more likely for us to move to a more
densely populated area of the sample space; even though the steps are random, for example
usig a random walk, the acceptance of our movements is not.

Random Walk - A random walk is a sequence that starting from a initial point 𝑋0 can
be constructed by

𝑋𝑛+1 = 𝑋𝑛 + 𝜖𝑛,

where 𝜖𝑛 is a random value.

The Metropolis-Hasting algorithm can be divided in the following steps (using 𝑅𝑡 as an
example):

1. start with 𝑅𝑡 and choose a initial state for 𝑡 = 0;

2. generate a candidate for 𝑅*
0 from 𝑔(𝑅*

0 | 𝑅𝑡);

3. calculate the ratio

𝑃 (𝑅𝑡)𝑔(𝑅*
0 | 𝑅𝑡)

𝑃 (𝑅*
0)𝑔(𝑅𝑡 | 𝑅*

0) ;

4. compute the acceptance probability

𝐴(𝑅*
0, 𝑅𝑡) = min

(︃
1,

𝑃 (𝑅*
𝑡 )𝑔(𝑅0 | 𝑅*

𝑡 )
𝑃 (𝑅*

0)𝑔(𝑅*
𝑡 | 𝑅0)

)︃
;
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5. generate 𝑢 from the uniform distribution and replace or update 𝑅𝑡 based on

𝑅𝑡+1 =

⎧⎪⎨⎪⎩𝑅*
1, 𝑢 ≤ 𝐴(𝑅*

0, 𝑅𝑡),

𝑅𝑡, 𝑢 > 𝐴(𝑅*
0, 𝑅𝑡).

It is common to ignore the first steps of the simulation since they are most likely not in
equilibrium and thus do not represent the target distribution. In our approach the proposed
distributions are obtained by random walks. To run our method and the algorithm we used
the software R, in which we used only the basic R tools and the package "Splines" version
4.0.1. For a new value to be accepted in our method three proposals had to be accepted,
the time series for infections, the reproductive number and the weekly pattern. This creates
difficulties for convergence of the method and the necessity of several simulations to get a
representative mapping of the space of the distribution. This problem can be overcome by
tuning the parameters of the random walk so that the proposals are more likely to be accepted
in order to have a higher acceptance ratio.
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Chapter 4

Results

4.1 Simulated Data
First we applied the method from Section 3.4 to simulated data. We simulated with a

constant 𝑅𝑡 equal to 3 starting from one case until 21 days of the progression of the disease.
In Figure 4.1.1 we can see a time series of the cases 𝑦, remember, this is not the true incidence
curve and just the reported cases.

Figure 4.1.1 – Time series of infections (𝑦) resulted from simulated data with 𝑅𝑡 = 3 during
a period of 21 days.

Figure 4.1.2 show the results for 𝑅𝑡 in boxplots for the 21 days of simulations. The first
thing that is noticeable is the overestimation in the beginning and the underestimation in the
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end. This is common to all methods since the data in this type of problem always suffer from
right and left truncation. This happens because there are no more cases after the 21st day so
the model compensates by reducing the value of 𝑅𝑡 in the final estimates, thus with a smaller
value of 𝑅𝑡 the model justifies the data available, i.e, the absence of cases on the 22th day.
The opposite occurs in the initial days, for example, considering the second day of the time
series all the cases should come from the first day and thus the model overestimates the values
of 𝑅𝑡 in the first day.

Although the value of 𝑅𝑡 in the first and last five days are far from the true value 𝑅𝑡 = 3
shown in the red horizontal line, this is a important indication that the method is working
properly due to the fact that the over and under estimation happens about one serial interval
from the beginning and the end of the time series, indicated by the vertical red lines..

Figure 4.1.2 – Estimation of 𝑅𝑡 from the simulated data with 200.000 iterations of the
Metropolis-Hastings algorithm. Vertical red lines indicate one serial interval
from the beginning and the end of the time series, while the horizontal red line
indicates the true value of 𝑅𝑡

Figure 4.1.3 illustrates another way to check if we are correctly estimating the reproductive
number. We used the average of the Poisson distribution obtained to reconstruct the cases
and as we can see it followed the simulated data (red dots) well, giving confidence that the
method is correctly estimating 𝑅𝑡.
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Figure 4.1.3 – Reconstruction of infected series based on the average of the Poisson distribu-
tion calculated during the Metropolis-Hastings algorithm. Red dots represent
the true infected time series and the boxplots contain the values estimated from
200,000 iterations

Another performance check during the test with the simulated data was based on checking
the convergence of the Metropolis-Hastings to a distribution. This can be seen in the annex in
Figures A.0.1 and A.0.2, which show the values of the reconstructed cases and 𝑅𝑡 converging
to a distribution from its initial starting point.
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4.2 Switzerland
Using the Swiss data we estimated the reproductive number varying the number of splines

(𝑞) in Figure 4.2.1. With 𝑞 = 15 it is noticeable that we were not able to capture most of the
variations during a short period. The figure shows that with 𝑞 = 30 and 𝑞 = 60 we capture
the significant increase of cases during October 2020.

Figure 4.2.1 – Estimates of the reproductive number using the data from Switzerland. Bold
line indicates the median and the translucid lines indicates the 95% confidence
interval, q is equal to the number of splines used
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We then use the values of the Swiss Task-Force to compare to our results. As Figure 4.2.2
shows our results were very similar, with the main differences occurring in the initial period
of the pandemic, but after July both are very close, although the NCS-TF method captures
more short-term variations.

Figure 4.2.2 – Estimated reproductive number for Switzerland comparing the project’s and
the NCS-TF method. Bold line indicates the median and the trans-lucid lines
indicates the 95% confidence interval
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Figure 4.2.3 uses the method for the data from Brazil. We see that the task force has very
different results from the project. The first thing we notice is the large confidence interval
from the task force method. Also, the task force method capture more short-term variations,
but this could be achieved by increasing the number of splines in our prior distribution.

Figure 4.2.3 – Estimated reproductive number for Brazil comparing the project’s and the NCS-
TF method. Bold line indicates the median and the translucid lines indicates
the 95% confidence interval
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Chapter 5

Conclusion

The method developed worked well in the simulated data as our estimates were close to
the true values and our algorithm converged to the target distribution. Also, comparing to the
results of the NCS-TF we could see similar results reassuring that we can apply this method
to real world data. Despite the longer computation time in our method (up to 10 minutes)
we saw a significant decrease in the confidence interval in the Brazil time series, giving more
confidence for public officials to make decisions. Like all methods developed so far, our method
suffers from left truncation, which generates an over-estimate of the reproductive number in
the beginning and also from right truncation, which causes underestimation at the end of the
time series. The most important problem to deal with the right truncation, since this affects
how fast the government can respond to changes in the reproductive number. Also the left
truncation issue occurs in a fixed point in time, at the beginning of the pandemic when the
disease has not spread throughout the country and society is just starting to notice that there
is something different, while the right truncation is a moving set of days during the ongoing
pandemic. When applying this approach to other data sets it should be noted that, depending
on the serial interval of the disease, the official reporting of values of the reproductive number
𝑅𝑡 should start at least one serial interval from the extreme points of the time series. For
example, the NCS-TF starts reporting the value of 𝑅𝑡 after 10 days of the first case and stops
reporting 10 days before the last day. This would also be appropriate for our method due to
what we analysed in both the simulated and real world data. Data augmentation methods
could be used to increase the incidence time series with artificial cases which will reduce the
issue with left and right truncation. There are several other aspects of the pandemic that
we did not introduce in the model but may be considered, such as, how to deal with more
infectious variants, the inclusion of vaccinated people in the population, sensitivity of the test
and several others that our method would probably benefit from if added.
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Even though the project focuses on estimating the reproduction number to orient public
policies, using it as the only guidance is not wise and the countries that we selected to our
analysis illustrate this issue.

Switzerland had a small percentage of its population infected in comparison to Brazil. But
the reproduction number of Switzerland shows high variability during the year. On the other
hand in Brazil’s case the country had a significant percentage of its population infected and the
reproduction number does not rise above 2. If we direct public policies during the worst period
of the pandemic in both countries in order to both to have a reproduction number around one,
in Brazil’s case it would maintain the ICUs full like it was in the peak of the pandemic while in
Switzerland which faced much less during its peak the country would have a significant lower
burden on its health systems. This illustrates that even when ignoring economical/political
factors and looking only based on an epidemiological point of view, the reproduction number
is not a stand–alone statistic and requires more information to grasp the entirety of each
country’s situation. Other epidemiological statistics must be consider with the reproductive
number, such as the numbers of cases and deaths, the availability of ICU and others.
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ANNEX A

ANNEX

Figures A.0.1 and A.0.2 show a form of checking the convergence of a Metropolis-Hastings
algorithm to a target distribution. Figure A.0.1 shows that the time series starts far from the
rest of the time series but after a few iterations it reaches a new level and oscillates around it.
Figure A.0.2 the initial values of 𝑅𝑡 were closer to the target value, but we still see the same
phenomenon occurring in the beginning of the time series (panels “Time 2” and “Time 4”)
since their target values are far from the initial values proposed due to the under-estimation
that occurs in the beginning of the period as commented before.
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Figure A.0.1 – Time series of the number iterations from the Metropolis-Hastings algorithm
in the x-axis and the value of the number of reported cases on the y-axis based
on the simulated data

Figure A.0.2 – Time series of the number iterations from the Metropolis-Hastings algorithm
in the x-axis and the value of the reproduction number on the y-axis based on
the simulated data
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