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Resumo
A observação de desfechos de sobrevivência frequentemente requer algum tipo de acompan-
hamento dos indivíduos em um estudo, sendo comum coletar dados longitudinal e de sobre-
vivência concomitantemente. Pela perspectiva da análise de dados longitudinais, a sobrevivên-
cia pode ser uma fonte de perda não ignorável, enquanto do ponto de vista de análise de
sobrevivência, biomarcadores observados ao longo do tempo de acompanhamento podem se
comportar como variáveis endógenas dependentes do tempo. O framework de modelos con-
juntos se propõe a lidar com estas situações combinando modelos lineares de efeitos mistos
com a regressão de riscos proporcionais através de uma função de verossimilhança conjunta.
Neste estudo, diferentes possibilidades de ligações entre os dois processos são apresentadas
na forma de parametrizações, e aplicadas a dois bancos de dados biomédicos. Primeiro, anal-
isamos medidas de cloro sérico tomadas diariamente em pacientes com COVID-19 internados
em unidade de tratamento intensivo. Segundo, exploramos a associação entre a contagem
longitudinal de linfócitos CD4 e o tempo até a recuperação imunológica de pacientes com
HIV. Cada parametrização permite uma interpretação biológica diferente sobre a dinâmica
subjacente das doenças estudadas, e a parametrização de inclinação tempo-dependente, em
particular, se mostra especialmente útil nas situações estudadas.

Palavras-chave: Modelos conjuntos. Análise de sobrevivência. Dados longitudinais.



Abstract
The observation of survival outcomes often requires some type of follow-up of the individuals of
a study, and therefore it is common to collect both longitudinal and survival data concurrently.
From the longitudinal data analysis perspective, survival may be a source of non-ignorable
missingness, while from the survival standpoint, biomarkers collected across follow-up time
may behave as endogenous time-varying covariates. The joint model framework proposes to
deal with this situation by combining linear mixed-effects models and proportional hazards
regression through a joint likelihood function. In this study, different possibilities of linking the
two processes are presented in the form of parameterizations of the joint model, and applied to
two sets of biomedical data. First, we analyzed serum chloride measurements taken daily from
COVID-19 patients admitted to an intensive care unit and its association with patient survival.
Second, we explore the association between longitudinal CD4 lymphocyte count and the time
to immunologic recovery in HIV patients. Each parameterization applied to the datasets allows
for a different biological interpretation of the underlying dynamics of the diseases studied, and
the time-dependent slopes parameterization, in particular, appears especially useful in these
settings.

Keywords: Joint models. Survival analysis. Longitudinal data.
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Chapter 1

Introduction

In biomedical research, it is important to look for statistical methods that allow not only
to make precise predictions, but also to explain the underlying mechanisms that surround a
biological process or a disease. In cohort studies or clinical trials that investigate the course
of a disease or a treatment, it is common to have survival as an outcome of interest, as well
as other time-to-event outcomes. These scenarios require longitudinal monitoring of study
participants, and consequently statistical methods that accommodate longitudinal data.

When conducting a survival study, it is expected to have some type of repeated measure
of each subject while waiting for the event of interest to occur. Although possible, the use of
proportional hazards regression with time-dependent covariates for this situation might not be
adequate, especially if the longitudinal variable happens to be an endogenous one (WU et al.,
2011), meaning it is a measure of each individual and its measurement depends on the event
not happening. This is the case when the event studied is death and the longitudinal covariate
is a biomarker. This context also increases the complexity in modeling the longitudinal data
itself, as the loss of follow-up caused by a patient’s death may be the case of non-ignorable
missingness, if the values of the biomarker are related to the the dropout process, which in this
case is death. In the presence of data that is missing not at random (MNAR), joint models
are known to provide less biased results (WU et al., 2011) for longitudinal models, and allow
for survival time to be modeled in the presence of time-dependent internal covariates, usually
not accommodated by traditional survival analysis (RIZOPOULOS, 2012).

The earliest developments in joint models for longitudinal and survival data were motivated
by the study of Human Immunodeficiency Virus (HIV) and Acquired Immunodeficiecy Syn-
drome (AIDS) (GRUTTOLA; TU, 1994; TSIATIS; DEGRUTTOLA; WULFSOHN, 1995), as
the white blood cell type CD4 is known to provide valuable insight into the disease progression
when monitored longitudinally. In an effort to tackle the issue of survival estimation with en-
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dogenous covariates, early approaches (SELF; PAWITAN, 1992) focused on two-stage methods
for estimation, meaning the longitudinal model would be estimated first, independently of the
survival information, and these fixed and random effects would be used to produce estimates
for the longitudinal marker at each time point 𝑡, that would then be introduced as the covari-
ate to estimate the survival model. This procedure’s main advantage was its computational
simplicity. However, ignoring the informative dropouts generated by the occurance of events
in the estimation of longitudinal trajectories can lead to biased results (WU et al., 2011).
In addition, these methods do not incorporate the uncertainty associated with the estimates
of the longitudinal marker, and therefore may lead to underestimated standard errors for the
parameter estimates.

The joint model framework allows two submodels, a longitudinal one and a survival one, to
be connected, as the survival submodel incorporates some characteristics of the longitudinal
submodel. This conection can be specified in various ways, leading to different parameter-
izations with different biological interpretations. What defines this framework is that both
outcomes are modeled simultaneously, considering a conditional joint density (CEKIC et al.,
2021). When the two outcomes are in fact correlated and the longitudinal variable is an en-
dogenous one, this approach leads to better accuracy in the estimated parameters of each
model (CEKIC et al., 2021; IBRAHIM; CHU; CHEN, 2010). By providing a measure of the
effect of some aspect of the longitudinal trajectory on the survival outcome, joint modeling
becomes more informative than the independent modeling of longitudinal and survival data
separately.

In the present work, we will introduce the theory and usage of joint models by applying
different parameterizations to two sets of data. First, we aim to examine serum chloride con-
centration alterations in COVID-19 patients being treated in the intensive care unit (ICU) of
the Security Forces Hospital in Saudi Arabia, measured daily from admission to discharge or
death, and explore the association between these longitudinal measures and patient survival.
This study has been submitted as an original article to the journal Revista Brasileira de Terapia
Intensiva. In addition, we also extend a previous analysis of HIV patients coinfected with the
hepatitis B virus (HBV) and the hepatitis C virus (HCV).

1.1 Objectives
The goal of this study is to present different parameterizations of the joint model method-

ology for longitudinal and survival data.
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1.1.1 Specific Objectives

• To intruduce the joint model methodology and each parameterization.

• To analyze serum chloride and COVID-19 survival data using different parameterizations
of the joint model and compare the results

• To analyze CD4 lymphocyte count and its relationship to immunologic recovery using
different parameterizations of the joint model and compare the results

• To analyze the residuals of each model fit.

• To showcase the advantages of the joint model methodology in applied research.
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Chapter 2

Methods

In this chapter, we introduce the fundamental concepts of the analysis of longitudinal and
survival data, from the separate treatment of each type of data to the joint modelling of the
two.

2.1 Longitudinal Data
Frequently encountered in the medical field, longitudinal data are characterized by the

repeated measures of one or more variables in the same set of subjects over time. It is expected
that repeated measures of the same subject are positively correlated, but measures from
different subjects are independent of each other. This correlation structure must be taken
into account when dealing with such data. Other common features of longitudinal data are
the potential for missing and unbalanced measures, meaning different subjects might have a
different number of observations, as well as have been observed at different time intervals.

A common methodology used to accommodate existing correlation while modeling the
changes in the response variable over time is the mixed-effects (ME) regression model. A
general linear ME model can be defined as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑦𝑦𝑦𝑖 = 𝑋𝑖𝛽𝛽𝛽 + 𝑍𝑖𝑏𝑏𝑏𝑖 + 𝜀𝜀𝜀𝑖,

𝑏𝑏𝑏𝑖 ∼ 𝒩 (0, 𝐷),

𝜀𝜀𝜀𝑖 ∼ 𝒩 (0, 𝜎2𝐼𝐼𝐼𝑛𝑖
),

(2.1.1)

where 𝑦𝑦𝑦𝑖 is a vector of responses of dimension 𝑛𝑖 that assumes values 𝑦𝑖𝑗 for the 𝑖th in-
dividual at the 𝑗th time point. 𝑋𝑖 and 𝑍𝑖 are known design matrices, for the fixed-effects
regression coefficients 𝛽𝛽𝛽 and the random-effects regression coefficients 𝑏𝑏𝑏𝑖. A multivariate nor-
mal distribution with mean zero and variance-covariance matrix 𝐷 is assumed for the random
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effects, which are independent of the error terms 𝜀𝜀𝜀𝑖, also normally distributed with mean zero
and variance matrix 𝜎2𝐼𝑛𝑖

. Responses from the same subject at different time points are con-
ditionally independent, given the covariates and random effects, and have conditional normal
distributions.

Given that the marginal density of the observed response variable for the 𝑖th subject is an 𝑛𝑖-
dimensional Normal distribution with mean 𝑋𝑖𝛽𝛽𝛽 and variance-covariance matrix 𝑉𝑖 = 𝑍𝑖𝐷𝑍 ′

𝑖 +
𝜎2𝐼𝑛𝑖

, and the maximum likelihood estimator for the vector of fixed effects 𝛽𝛽𝛽 is dependent on
𝑉𝑖, the linear ME model parameters can be estimated through Restricted Maximum Likelihood
(REML), where

𝛽𝛽𝛽 =
(︁
Σ𝑛

𝑖=1𝑋
′
𝑖𝑉

−1
𝑖 𝑋𝑖

)︁−1
Σ𝑛

𝑖=1𝑋
′
𝑖𝑉

−1
𝑖 𝑦𝑦𝑦𝑖 (2.1.2)

corresponds to the generalized least squares estimator, and 𝑉𝑖 is obtained by maximizing
the modified log-likelihood function, corrected by the term:

−1
2 log |Σ𝑛

𝑖=1𝑋
′
𝑖𝑉

−1
𝑖 𝑋𝑖|, (2.1.3)

usually with the aid of a numerical optimization algorithm such as the quasi-Newton
Broyden–Fletcher–Goldfarb–Shanno method implemented in the nlme package (PINHEIRO;
BATES; R Core Team, 2022), given the great complexity of obtaining the parameter estimates
analitically. More detail on the REML method can be found in Rizopoulos (2012) and Diggle
et al. (2013)

Once estimated, the fixed effects can be interpreted similarily to the coefficients of regular
linear regression, and represent covariate effects at the population level, while an individual’s
random effects represent that subject’s deviation from the population mean. To accomodate
longitudinal trajectories that start at different points for different individuals, a random inter-
cept term, 𝑏0𝑖, is added to the fixed intercept term 𝛽0 and therefore allows individuals baseline
measurements to vary. This structure will induce a correlation structure for observations of the
same individual that is compound symmetric, meaning each pair of two observations of the
same individual are equally correlated independent of their distance in time. For 𝑏𝑖 ∼ 𝒩 (0, 𝜎2

𝑏 ),
the implied marginal covariance structure takes the form

𝑉𝑖 = 𝜎2
𝑏 1𝑛𝑖

1′
𝑛𝑖

+ 𝜎2𝐼𝑛𝑖
, (2.1.4)

1𝑛𝑖
denoting the 𝑛𝑖-dimensional unit vector. This structure assumes constant variance over

time as well as equal positive correlation 𝜌 between the measurements of any two time points,
which can be referred to as intra-class correlation coefficient.

To allow for random slopes over time as well as random intercepts, another random effect
𝑏1𝑖 is introduced to the model, accomodating trajectories that have different evolutions over
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time. The presence of both random effects will induce a different marginal covariance function
for observations of the same individual,

𝑐𝑜𝑣(𝑦𝑖𝑗, 𝑦𝑖𝑗′) = 𝑑22𝑡𝑖𝑗𝑡𝑖𝑗′ + 𝑑12(𝑡𝑖𝑗 + 𝑡𝑖𝑗′) + 𝑑11 + 𝜎2, (2.1.5)

where 𝑑𝑘𝑙 represent the elements of the random effects covariance matrix D. For the same
time point 𝑡𝑖𝑗 = 𝑡𝑖𝑗′ = 𝑡 the variance function is still dependent on 𝑡 and therefore this model
has heteroscedastic error terms, and it is expected that variance increases over time, while the
correlations decrease (RIZOPOULOS, 2012). The linear ME model can also be extended to
account for further correlation in the data by allowing a more general covariance matrix for
subject-specific errors Σ𝑖, such that 𝜀𝜀𝜀𝑖 ∼ 𝒩 (0, Σ𝑖). This matrix can have various structures
which lead to different types of serial correlation functions.

According to Rizopoulos (2012), ME models are commonly used in the joint modeling
framework for longitudinal and time to event data because of their ability to predict individual
trajectories of the response variable over time, as well as their flexibility when it comes to
unbalanced data. Not only does this methodology account for correlation within individuals in
a parsimonious way, it also does not require different individuals to have the same number of
observations, or for the observations to be made at the same set of time points.

2.2 Survival Analysis
In the field of biostatistics, it is common to have interest in studying the time until the

occurrence of a certain event, a variable commonly referred to as failure time. The main
characteristic of this type of data is the presence of incomplete information, known as censoring.
Censoring occurs when a subject’s follow up is interrupted and the event that is being evaluated
is not in fact observed, leading to a partial observation of the actual failure time (COLOSIMO;
GIOLO, 2006).

Extending the use of traditional statistics, the field of Survival Analysis provides methods
that appropriately incorporate censored observations. This study focuses on the most common
type of censoring, known as right censoring, which refers to the situation where a censored
subject’s true failure time is unknown, but is known to be greater than the observed time
(RIZOPOULOS, 2012). This type of censoring occurs, for example, when the data collection
period of a study ends before every subject has experienced the event. It can also be caused
by subjects who choose to drop out of the study or experience the event for a reason different
than the one being studied.

When characterizing survival data, an indicator variable 𝛿𝑖 is defined, which assumes value
1 when the i-th subject has experienced the event, and zero when it is right-censored. Then,
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𝛿𝑖 =

⎧⎪⎨⎪⎩1 if subject 𝑖 has failed
0 if subject 𝑖 is censored, for 𝑖 = 1, 2, ..., 𝑛.

(2.2.1)

In addition, the survival function is defined in terms of a continuous random variable 𝑇 *,
which denotes the failure times, and 𝑝(.), the corresponding probability density function. 𝑆(𝑡)
expresses the probability that the event occurs after 𝑡, or that a subject survives time 𝑡,

𝑆(𝑡) = 𝑃𝑟(𝑇 * > 𝑡) =
∫︁ ∞

𝑡
𝑝(𝑠)𝑑𝑠. (2.2.2)

A survival function 𝑆(𝑡) must be nonincreasing as 𝑡 increases, and 𝑆(𝑡 = 0) always equals
one unit, meaning at time zero none of the subjects has experienced the event, and the
probability of surviving cannot increase over time.

The hazard function also plays an important role in survival analysis, describing the instan-
taneous risk of an event in the time interval [𝑡, 𝑡 + 𝑑𝑡), given survival up to time 𝑡. The hazard
function is defined as

ℎ(𝑡) = lim
𝑑𝑡→0

𝑃𝑟(𝑡 ≤ 𝑇 * < 𝑡 + 𝑑𝑡|𝑇 * ≥ 𝑡)
𝑑𝑡

, (2.2.3)

and can also be referred to as risk function. The survival and the risk functions can be
expressed in terms of each other, as

𝑆(𝑡) = exp{−𝐻(𝑡)} = exp
{︁

−
∫︁ 𝑡

0
ℎ(𝑠)𝑑𝑠

}︁
, (2.2.4)

where 𝐻(𝑡) describes the accumulated risk until time 𝑡 and is known as the cumulative
risk or cumulative hazard function.

The general interest when conducting survival data analysis is to estimate the survival
function or the hazard function from the available data. Nonparametrically, the survival function
can be estimated through the Kaplan-Meier (KM) estimator, proposed in 1958 (KAPLAN;
MEIER, 1958). This estimator does not assume any underlying probability distribution for the
failure times, and provides a survival curve that is based solely on the observed {𝑇 *

𝑖 , 𝛿𝑖}. Given
𝑟𝑖 the number of subjects at risk at each distinct observed failure time 𝑡𝑖, and 𝑑𝑖 the number
of events that occur at 𝑡𝑖, the KM estimator is

𝑆𝐾𝑀(𝑡) =
∏︁

𝑖:𝑡𝑖≤𝑡

𝑟𝑖 − 𝑑𝑖

𝑟𝑖

. (2.2.5)

Estimation of survival function can also be based on the maximum likelihood method, when
𝑆(𝑡) is assumed to have a specific parametric form. When constructing the likelihood function,
censoring must be taken into account, and subjects who experience the event contribute more
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information than censored observations. Let’s assume {𝑇𝑖, 𝛿𝑖}, 𝑖 = 1, ..., 𝑛, a random sample
from a distribution function parameterized by 𝜃𝜃𝜃, with probability density function 𝑝(𝑡;𝜃𝜃𝜃). A
subject 𝑖 contributes 𝑝(𝑇𝑖;𝜃𝜃𝜃) to the likelihood when the event occurs for that subject on time
𝑇𝑖, and contributes 𝑆𝑖(𝑇𝑖;𝜃𝜃𝜃) to the likelihood when the subject is censored at time 𝑇𝑖. Thus,
we obtain the log-likelihood function

ℓ(𝜃) =
𝑛∑︁

𝑖=1
𝛿𝑖 log 𝑝(𝑇𝑖;𝜃𝜃𝜃) + (1 − 𝛿) log 𝑆𝑖(𝑇𝑖;𝜃𝜃𝜃), (2.2.6)

which can also be rewritten in terms of the hazard function as

ℓ(𝜃) =
𝑛∑︁

𝑖=1
𝛿𝑖 log ℎ𝑖(𝑇𝑖;𝜃𝜃𝜃) −

∫︁ 𝑇𝑖

0
ℎ𝑖(𝑠;𝜃𝜃𝜃)𝑑𝑠. (2.2.7)

Maximum likelihood estimates for 𝜃𝜃𝜃 can be achieved through iterative procedures such
as the Newton-Raphson algorithm, and inference can be made under classical asymptotic
maximum likelihood theory (COX; HINKLEY, 1979).

In addition to parametric and non-parametric approaches, a semi-parametric method known
as the proportional hazards model has been widely utilized in the medical field for the analysis
of survival data. The model assumes that covariates have multiplicative effects on the event’s
hazard, such that

ℎ𝑖(𝑡|𝑤𝑤𝑤𝑖) = ℎ0(𝑡) exp(𝛾𝛾𝛾′𝑤𝑤𝑤𝑖), (2.2.8)

where 𝑤𝑤𝑤′
𝑖 = (𝑤𝑖1, ..., 𝑤𝑖𝑝) corresponds to the covariate vector and 𝛾𝛾𝛾 the vector of respective

regression coefficients. The ℎ0(𝑡) function is the baseline hazard function, the hazard function
of a subject whose 𝛾𝛾𝛾′𝑤𝑤𝑤𝑖 = 0, and is treated nonparametrically, while a parametric form is
assumed for the covariate effects. Given the model in log scale,

log ℎ𝑖(𝑡|𝑤𝑤𝑤𝑖) = log ℎ0(𝑡) + 𝛾1𝑤𝑖1 + 𝛾2𝑤𝑖2 + ... + 𝛾𝑝𝑤𝑖𝑝, (2.2.9)

a regression coefficient 𝛾𝑗 denotes the change in the log hazard at any time point 𝑡 caused
by an increase of one unit in 𝑤𝑗 and no change in other predictors, and exp(𝛾𝑗) denotes the
hazard ratio for a one unit change in the corresponding predictor at any time 𝑡.

2.3 Missing Data in Longitudinal Studies
It is a common occurrence that participants of a longitudinal study will not be available

for all follow-up visits, resulting in some or many missing values in covariates. Dropouts due to
many reasons are also common, leading to unknown outcomes in the dataset. This is especially
true when dealing with longitudinal data in the survival context, since censoring usually prevents
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measurements of any variables to be taken, and the occurrence of the event of interest, when
the event of interest is death, can also prevent the measurement of endogenous covariables,
such as laboratory examinations.

Missing data can be summarized by three categories according to the mechanism that
leads to their missing status. To define these categories, as done by Rizopoulos (2012), let’s
introduce an observed data indicator 𝑟𝑖𝑗, which assumes value 1 when 𝑦𝑖𝑗 is observed, and 0
when it is missing. The vector 𝑟𝑟𝑟𝑖 = (𝑟𝑖1, ..., 𝑟𝑖𝑛𝑖

)′ contains information for the response vector
𝑦𝑦𝑦𝑖, which can be partitioned into two subvectors 𝑦𝑦𝑦𝑜

𝑖 , containing the observed data, and 𝑦𝑦𝑦𝑚
𝑖 ,

containing the missing data.

Missing data mechanisms are defined according to the probability of 𝑟𝑟𝑟𝑖, conditional to
the response vector 𝑦𝑦𝑦𝑖 = 𝑦𝑦𝑦𝑜

𝑖 + 𝑦𝑦𝑦𝑚
𝑖 and the corresponding parameter vector 𝜃𝜃𝜃𝑟.The Missing

Completely at Random (MCAR) mechanism is present when the probability of observations
being missing is not related to either 𝑦𝑦𝑦𝑚

𝑖 or 𝑦𝑦𝑦𝑜
𝑖 , that is, not dependent on observed values or

on the unobserved ones. This mechanism allow for the observed data 𝑦𝑦𝑦𝑜
𝑖 to be considered a

random sample of the complete data 𝑦𝑦𝑦𝑖, such that the distribution of the observed data and
the distribution of the complete data are the same. These results imply that there is no harm in
ignoring the process generating the missing data, as any common statistical methods applied
to the data should provide valid inferences.

Missing at Random (MAR) differs to MCAR in that this mechanism assumes the probability
of an observation being missing is related to the set of available observations, although like in
MCAR it is unrelated to the values that are missing. Therefore, when data are MAR,

𝑝(𝑟𝑟𝑟𝑖|𝑦𝑦𝑦𝑜
𝑖 , 𝑦𝑦𝑦

𝑚
𝑖 , 𝜃𝜃𝜃𝑟) = 𝑝(𝑟𝑟𝑟𝑖|𝑦𝑦𝑦𝑜

𝑖 , 𝜃𝜃𝜃𝑟), (2.3.1)

meaning 𝑟𝑟𝑟𝑖 is conditionally independent of 𝑦𝑦𝑦𝑚
𝑖 given 𝑦𝑦𝑦𝑜

𝑖 . MAR data is the case of random
dropouts, when an individual’s lack of follow up is related only to the observed values of 𝑦𝑦𝑦𝑖.
In these cases, observed data cannot be considered a random sample of the complete vector
of observations 𝑦𝑦𝑦𝑖, as their distributions do not coincide. Likelihood-based analyses that only
take into account the observed data can still provide valid inferences, given that the model for
𝑦𝑦𝑦𝑖 has been specified correctly.

Lastly, when the probability of not observing a longitudinal response is related to the missing
values themselves, the missing data mechanism is called Missing Not at Random (MNAR),
also referred to as nonrandom dropout. Similarly to MAR cases, under a MNAR process the
observed data cannot be considered a random sample of the complete observations, and the
distribution of 𝑦𝑦𝑦𝑚

𝑖 given 𝑦𝑦𝑦𝑜
𝑖 depends on both 𝑦𝑦𝑦𝑜

𝑖 and 𝑝(𝑟𝑟𝑟𝑖|𝑦𝑦𝑦𝑖). In these cases, the missingness
process must be considered in the analysis, and we can only obtain valid inferences from
analyses that consider the joint distribution of the response process and missing process, such
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as shared parameter models, which introduce random effects that capture the association
between the two processes. In this framework, given 𝜃𝜃𝜃 the parameter vector of the joint
distribution, 𝜃𝜃𝜃𝑦 the parameter vector of the measurement model and 𝜃𝜃𝜃𝑏 the parameters of the
random effects covariance matrix,

𝑝(𝑦𝑦𝑦𝑜
𝑖 , 𝑦𝑦𝑦

𝑚
𝑖 , 𝑟𝑟𝑟𝑖;𝜃𝜃𝜃) =

∫︁
𝑝(𝑦𝑦𝑦𝑜

𝑖 , 𝑦𝑦𝑦
𝑚
𝑖 |𝑏𝑏𝑏𝑖;𝜃𝜃𝜃𝑦)𝑝(𝑟𝑟𝑟𝑖|𝑏𝑏𝑏𝑖;𝜃𝜃𝜃𝑟)𝑝(𝑏𝑏𝑏𝑖;𝜃𝜃𝜃𝑏)𝑑𝑏𝑏𝑏𝑖, (2.3.2)

meaning the two processes are assumed conditionally independent given the random effects.
Shared parameter models can also be refferred to as Joint Models, as has been done in this
text.

When in the specific situation of jointly modelling a longitudinal biomarker and a survival
outcome, it may not be conceptually reasonable to consider the values of the longitudinal
outcome after the occurrence of the event, that is, after the subject is deceased (KURLAND
et al., 2009). However, Rizopoulos (2012) point out that when assuming a mixed effects model
for the observed longitudinal responses, the joint model implicitly makes assumptions for the
complete response vector 𝑦𝑦𝑦𝑖, where 𝑦𝑦𝑦𝑜

𝑖 contains every longitudinal measure of subject 𝑖 before
the event time and 𝑦𝑦𝑦𝑚

𝑖 the longitudinal measures that would have been observed had the event
not occurred. Given 𝑇 *

𝑖 the failure time,

𝑝(𝑇 *
𝑖 |𝑦𝑦𝑦𝑜

𝑖 , 𝑦𝑦𝑦
𝑚
𝑖 ;𝜃𝜃𝜃) =

∫︁
𝑝(𝑇 *

𝑖 |𝑏𝑏𝑏𝑖, 𝜃𝜃𝜃)𝑝(𝑏𝑏𝑏𝑖|𝑦𝑦𝑦𝑜
𝑖 , 𝑦𝑦𝑦

𝑚
𝑖 ;𝜃𝜃𝜃)𝑑𝑏𝑏𝑏𝑖, (2.3.3)

indicating the time to dropout (event occurance) depends on 𝑦𝑦𝑦𝑚
𝑖 and the corresponding

missing data mechanism is MNAR. This is conditional on the two processes, longitudinal and
survival, being dependent on each other, and sharing random effects, a characteristic that
can be inferred on through the association parameters introduced to the survival model. When
these parameters are not significant, i.e. equal zero, the dropout process corresponds to MCAR,
and the two outcomes can be modeled separately. Additionally, dropouts in the longitudinal
measuring process may also come from censoring, which in this framework is assumed to
be noninformative and therefore dependent only on the observed history of the longitudinal
biomarker that precedes censoring, characterizing a MAR mechanism.

2.4 Joint Models
Joint models estimated by a joint likelihood method can be a more effective approach

to study both the longitudinal and time-to-event outcomes simultaneously (WU et al., 2011).
These models are composed of two sub-models, which are connected by either a shared random
effect or a coefficient, and all parameters are estimated simultaneously.

To specify the joint model, we introduce a term 𝑚𝑖(𝑡) which denotes the true value of the
longitudinal variable at time 𝑡. This term is different than the observed values 𝑦𝑖(𝑡), given that
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these are contaminated with measurement error and may not have been observed for every
time point 𝑡. A relative risk model that quantifies the association between 𝑚𝑖(𝑡) and the risk
for an event can be written as

ℎ𝑖(ℳ𝑖(𝑡),𝑤𝑤𝑤𝑖) = lim
𝑑𝑡→0

𝑃𝑟{𝑡 ≤ 𝑇 *
𝑖 < 𝑡 + 𝑑𝑡|𝑇 *

𝑖 ≥ 𝑡, ℳ𝑖(𝑡),𝑤𝑤𝑤𝑖}/𝑑𝑡

= ℎ0(𝑡) exp{𝛾𝛾𝛾′𝑤𝑤𝑤𝑖 + 𝛼𝑚𝑖(𝑡)}, 𝑡 > 0,
(2.4.1)

where ℳ𝑖(𝑡) = {𝑚𝑖(𝑠), 0 ≤ 𝑠 < 𝑡} is the history of the unobserved longitudinal process
up to time point 𝑡, ℎ0(.) is the baseline risk function and 𝑤𝑤𝑤𝑖 a vector of baseline covariates with
corresponding regression coefficients 𝛾𝛾𝛾. Parameter 𝛼 quantifies the effect of the longitudinal
outcome on the risk for an event, such that exp{𝛼}, in this parameterization, represents the
relative increase in the risk of an event that results from one unit of increase in 𝑚𝑖(𝑡) at a certain
time point. Additionally, parameter 𝛼 represents the connection through which the survival
and the longitudinal submodels share the same random effects. When this parameter is equal
to zero, the survival outcome no longer depends on the longitudinal outcome or the random
effects, and the parameters for each model can be estimated separately (RIZOPOULOS, 2012),
although joint model estimates will still be valid.

While in semi-parametric proportional hazards modeling we can usually leave the baseline
risk function ℎ0(.) completely unspecified without any issue, that is not true for joint modelling.
Although possible (WULFSOHN; TSIATIS, 1997), leaving the baseline risk function unspecified
may result in underestimated standard errors for the parameter estimates (HSIEH; TSENG;
WANG, 2006). To avoid this, we can attribute a parametric distribution to ℎ0(.), such as the
Weibull distribution, or opt for a more flexible specification based on splines.

2.4.1 Maximum Likelihood Estimation
Estimation of the joint model is based on the joint distribution of the observed outcomes

{𝑇𝑖, 𝛿𝑖, 𝑦𝑦𝑦𝑖}, where the vector 𝑦𝑦𝑦𝑖 contains the observations of the 𝑖th individual at each available
time point 𝑗, and assuming that the random effects 𝑏𝑏𝑏𝑖 account not only for the correlation
between the repeated measurements in the longitudinal data but also the association between
the longitudinal and the event outcomes. Formally, we define 𝜃𝜃𝜃 = (𝜃𝜃𝜃′

𝑡, 𝜃𝜃𝜃
′
𝑦, 𝜃𝜃𝜃′

𝑏)′ the full param-
eter vector, where 𝜃𝜃𝜃𝑡 corresponds to the parameters for the event time outcome, 𝜃𝜃𝜃𝑦 to the
parameters for the longitudinal outcome and 𝜃𝜃𝜃𝑏 the parameters of the random-effects covari-
ance matrix. Therefore, the event outcomes and the longitudinal outcome are conditionally
independent, given the random effects and parameters, and longitudinal measurements of the
same subject are also independent given the random effects and parameters,

𝑝(𝑇𝑖, 𝛿𝑖, 𝑦𝑦𝑦𝑖|𝑏𝑏𝑏𝑖;𝜃𝜃𝜃) = 𝑝(𝑇𝑖, 𝛿𝑖|𝑏𝑏𝑏𝑖;𝜃𝜃𝜃)𝑝(𝑦𝑦𝑦𝑖|𝑏𝑏𝑏𝑖;𝜃𝜃𝜃), and (2.4.2)
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𝑝(𝑦𝑦𝑦𝑖|𝑏𝑏𝑏𝑖;𝜃𝜃𝜃) =
∏︁
𝑗

𝑝{𝑦𝑖(𝑡𝑖𝑗)|𝑏𝑏𝑏𝑖;𝜃𝜃𝜃}. (2.4.3)

The log-likelihood contribution for the 𝑖th subject can be defined as

log 𝑝(𝑇𝑖, 𝛿𝑖, 𝑦𝑦𝑦𝑖;𝜃𝜃𝜃) = log
∫︁

𝑝(𝑇𝑖, 𝛿𝑖, 𝑦𝑦𝑦𝑖, 𝑏𝑏𝑏𝑖;𝜃𝜃𝜃)𝑑𝑏𝑏𝑏𝑖

= log
∫︁

𝑝(𝑇𝑖, 𝛿𝑖|𝑏𝑏𝑏𝑖;𝜃𝜃𝜃𝑡,𝛽𝛽𝛽)
[︁ ∏︁

𝑗

𝑝{𝑦𝑖(𝑡𝑖𝑗)|𝑏𝑏𝑏𝑖;𝜃𝜃𝜃𝑦}
]︁
𝑝(𝑏𝑏𝑏𝑖;𝜃𝜃𝜃𝑏)𝑑𝑏𝑏𝑏𝑖,

(2.4.4)

where the conditional density for the survival part 𝑝(𝑇𝑖, 𝛿𝑖|𝑏𝑏𝑏𝑖;𝜃𝜃𝜃𝑡,𝛽𝛽𝛽) takes the form

𝑝(𝑇𝑖, 𝛿𝑖|𝑏𝑏𝑏𝑖;𝜃𝜃𝜃𝑡,𝛽𝛽𝛽) = ℎ𝑖(𝑇𝑖|ℳ𝑖(𝑇𝑖);𝜃𝜃𝜃𝑡, 𝜃𝜃𝜃)𝛿𝑖𝑆𝑖(𝑇𝑖|ℳ𝑖(𝑇𝑖);𝜃𝜃𝜃𝑡,𝛽𝛽𝛽)

=
[︁
ℎ0(𝑇𝑖) exp{𝛾𝛾𝛾′𝑤𝑤𝑤𝑖 + 𝛼𝑚𝑖(𝑇𝑖)}

]︁𝛿𝑖

exp
(︁

−
∫︁ 𝑇𝑖

0
ℎ0(𝑠) exp{𝛾𝛾𝛾′𝑤𝑤𝑤𝑖 + 𝛼𝑚𝑖(𝑠)}𝑑𝑠

)︁
,

(2.4.5)

and the joint density for the longitudinal responses together with the random effects is
given by

𝑝(𝑦𝑦𝑦𝑖|𝑏𝑏𝑏𝑖;𝜃𝜃𝜃)𝑝(𝑏𝑏𝑏𝑖;𝜃𝜃𝜃) =
∏︁
𝑗

𝑝{𝑦𝑖(𝑡𝑖𝑗)|𝑏𝑏𝑏𝑖;𝜃𝜃𝜃𝑦}𝑝(𝑏𝑏𝑏𝑖;𝜃𝜃𝜃𝑏)

= (2𝜋𝜎2)− 𝑛𝑖
2 exp{−||𝑦𝑦𝑦𝑖 − 𝑋𝑖𝛽𝛽𝛽 − 𝑍𝑖𝑏𝑏𝑏𝑖||2/2𝜎2}

(2𝜋)
𝑞𝑏
2 det(𝐷)− 1

2 exp(−𝑏𝑏𝑏′
𝑖𝐷

−1𝑏𝑏𝑏𝑖/2),

(2.4.6)

where 𝑞𝑏 denotes the dimensionality of the random-effects vector and ||𝑥|| = [∑︀𝑖 𝑥2
𝑖 ]1/2

the Euclidean vector norm.

Maximization of the log-likelihood function ℓ(𝜃𝜃𝜃) = ∑︀
𝑖 log 𝑝(𝑇𝑖, 𝛿𝑖, 𝑦𝑦𝑦𝑖;𝜃𝜃𝜃) with respect to 𝜃𝜃𝜃

is usually done through the Expectation-Maximization (EM) algorithm.

Particularily, assuming a Weibull distribution for the baseline hazard:

ℎ0(𝑡) = (𝜈/𝜌)(𝑡/𝜌)𝜈−1, (2.4.7)

where 𝜌 > 0 is a scale parameter and 𝜈 > 0 a shape parameter, leads to a cumulative
baseline hazard rate of Λ0(𝑡) = (𝑡/𝜌)𝜈 and the conditional density for the survival part is
expressed as

𝑝(𝑇𝑖, 𝛿𝑖|𝑏𝑏𝑏𝑖;𝜃𝜃𝜃𝑡,𝛽𝛽𝛽) =
[︁
ℎ0(𝑇𝑖) exp{𝛾𝛾𝛾′𝑤𝑤𝑤𝑖 + 𝛼𝑚𝑖(𝑇𝑖)}

]︁𝛿𝑖

exp
(︁

− Λ0(𝑡) exp{𝛾𝛾𝛾′𝑤𝑤𝑤𝑖 + 𝛼𝑚𝑖(𝑠)}𝑑𝑠
)︁
.

(2.4.8)
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2.4.2 The Likelihood Ratio Test
Since the joint model is fit by maximizing the joint likelihood of the longitudinal and

survival data, the likelihood ratio test can be used to test hypothesis regarding its parameters
(RIZOPOULOS, 2012).

The test statistic is defined as

𝐿𝑅𝑇 = −2{ℓ(𝜃𝜃𝜃0 − ℓ(𝜃𝜃𝜃)} (2.4.9)

where 𝜃𝜃𝜃0 and 𝜃𝜃𝜃 represent the parameter estimates under the null and under the alternative
hypothesis, respectively. This test is appropriate for the comparison of nested models, where a
significant p-value indicates that the model under the alternative hypothesis provides a better
fit to the data than the model under the null hypothesis.

2.4.3 Diagnostics
Evaluation of model fit and validation of assumptions can be done for joint models using

different types of residuals, as well as measures of model fitness, as described in Rizopoulos
(2012). In this section we present these residuals and their usability in joint model diagnostics,
followed by the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC)
definitions.

2.4.3.1 Standardized Conditional Residuals

Conditional residuals, also referred to as subject-specific residuals, can be used to evaluate
the hierarchical version of the longitudinal submodel. These residuals predict the conditional
errors 𝜖𝜖𝜖𝑖 ∼ 𝑁(0, 𝜎2) in the presence of the random effects for each subject. Their standardized
version is defined as

𝑟𝑟𝑟𝑦𝑠𝑠
𝑖 (𝑡) = 𝑦𝑦𝑦𝑖(𝑡) − 𝑥𝑥𝑥′

𝑖(𝑡)𝛽𝛽𝛽 − 𝑧𝑧𝑧′
𝑖(𝑡)𝑏𝑏𝑏𝑖/�̂�, (2.4.10)

where 𝛽𝛽𝛽 and �̂� are the maximum likelihood estimates, and 𝑏𝑏𝑏𝑖 the empirical Bayes estimates
for the random effects.

These residuals can be used to verify the assumptions of homoscedasticity and normality.

2.4.3.2 Standardized Marginal Residuals

Marginal residuals come from the marginal longitudinal model, where the random effects
are omitted from the linear predictor, representing the marginal errors 𝑦𝑦𝑦𝑖 − 𝑋𝑖𝛽𝛽𝛽 = 𝑍𝑖𝑏𝑏𝑏𝑖 + 𝜖𝜖𝜖𝑖.

The standardized version of the marginal residuals is defined as

𝑟𝑟𝑟𝑦𝑠𝑚
𝑖 = 𝑉

−1/2
𝑖 (𝑦𝑦𝑦𝑖 − 𝑋𝑖𝛽𝛽𝛽), (2.4.11)
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where 𝑉𝑖 = 𝑍𝑖�̂�𝑍 ′
𝑖+𝜎2𝐼𝑛𝑖

represents the estimated marginal covariance matrix of 𝑦𝑦𝑦𝑖. These
residuals are useful when verifying the specification of the mean structure of the longitudinal
submodel, as well as normality and heteroscedasticity.

2.4.3.3 Martingale Residuals

To evaluate the survival submodel, martingale residuals can be calculated. These residuals
represent the difference between the observed and the expected number of events for the 𝑖th
subject at each time point based on the fitted model, and can be defined as

𝑟𝑟𝑟𝑡𝑚
𝑖 (𝑡) = 𝑁𝑖(𝑡) −

∫︁ 𝑡

0
𝑅𝑖(𝑠)ℎ̂0(𝑠) exp{𝛾′𝑤𝑤𝑤𝑖 + �̂��̂�𝑖(𝑠)}𝑑𝑠, (2.4.12)

for joint models fit with the current-value parameterization, where 𝑁𝑖(𝑡) is the counting process
denoting the number of events for subject 𝑖 at time 𝑡 and 𝑅𝑖(𝑡) is the risk indicator that assumes
value 1 if the subject is at risk at time 𝑡, and zero otherwise.

These residuals are useful when evaluating if the appropriate functional form has been
used to add the longitudinal process as a covariate in the survival model. Ideally, when plotted
against subject-specific fitted values of the longitudinal outcome, these residuals should present
a linear trend parallel to the horizontal axis.

2.4.3.4 Cox-Snell Residuals

Commonly used to evaluate the fit of survival models, the Cox-Snell residuals represent the
estimated cumulative risk function at each observed event time 𝑇𝑖, and for the current-value
parameterization can be defined as

𝑟𝑟𝑟𝑡𝑐𝑠
𝑖 =

∫︁ 𝑇𝑖

0
ℎ̂0(𝑠) exp{𝛾𝛾𝛾′𝑤𝑤𝑤𝑖 + �̂��̂�𝑖(𝑠)}𝑑𝑠. (2.4.13)

When the model fits the data well, it is expected that the Cox-Snell residuals will have a unit
exponential distribution. However, as the residuals are evaluated at the observed event times
𝑇𝑖 and these are censored, the residuals are censored as well, meaning they should represent
a censored sample from a unit exponential distribution. The fit can be assessed by comparing
the survival function of the unit exponential distribution with the Kaplan-Meier estimate of
the survival function of 𝑟𝑟𝑟𝑡𝑐𝑠

𝑖 .

2.4.3.5 Measures of Model Fit

The AIC and BIC are two goodness-of-fit statistics that summarize a model’s ability to
describe a set of data, commonly used for model selection when adding covariables or testing
different distributions to the data (VRIEZE, 2012). The two methods are based on the model’s
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likelihood function and therefore can only be used to compare models that are fit to the same
data and assuming probability distributions that may be different, but nested, meaning they
are particular cases of another, more general, distribution.

The AIC is defined as
𝐴𝐼𝐶 = 2ℓ(𝜃𝜃𝜃) + 2𝑝, (2.4.14)

where 𝑝 is the number of estimated parameters (the number of elements in 𝜃𝜃𝜃). Similarly,
the BIC is defined as

𝐵𝐼𝐶 = 2ℓ(𝜃𝜃𝜃) + log(𝑛)𝑝, (2.4.15)

𝑛 the number of observations contributing to the sum in the likelihood equation.

By reccomending the model with the lowest value for the criteria, both AIC and BIC seek to
penalize the model’s likelihood by adding a function of the number of estimated parameters, in
an effort to benefit a model that is parsimonious and avoid overfitting. An important difference
in the use of each criterion is the properties they have. The BIC is known to be consistent,
meaning that as the sample grows large, BIC will select the correct model with probability
that approaches 1, assuming that the true model is under consideration and has a constant
and finite number of parameters. That property is not true for the AIC, which is known to be
an efficient statistic instead, meaning it minimizes a loss function, the mean square error of
prediction, and therefore may be a better option when the true model we are seeking is one
of infinite parameters, when the number of parameters increases with the sample size or when
the true model is not a candidate for selection (VRIEZE, 2012).

2.5 Parameterizations of the Joint Model
In this section, we introduce four different parameterizations of the joint model for longi-

tudinal and time-to-event data, as described in Rizopoulos (2012), which allow for different
aspects of the longitudinal trajectory to be introduced as covariates in the survival model,
leading to more personalized estimates and different biological interpretations. These param-
eterizations are later utilized in the analysis of two different datasets.

2.5.1 Current value
We have previously presented a standard joint model where the exponential of the associa-

tion parameter 𝛼 denotes the change in the risk for an event at a certain time 𝑡 that is related
to a unit of increase in the value of the longitudinal outcome at that same time point. This
is often referred to as the "current value" parameterization, since the connection between the
two outcomes is based on the value of the longitudinal marker at a certain time point. This
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standard joint model has been widely utilized, in scenarious such as the prediction of prostate
cancer diagnosis using longitudinal PSA values (PIè et al., 2015) and the use of biomarkers
such as blood urea nitrogen and creatinine to predict kidney transplant graft failure (ALIMI
et al., 2020). Other parameterizations have been described by Rizopoulos (2012) and Cekic
et al. (2021), among others.

2.5.2 Time-dependent slopes
One other useful way to specify a joint model is through the "time-dependent slopes"

parameterization, where the association parameters 𝛼𝛼𝛼 are associated not only with 𝑚𝑖(𝑡), but
also its derivative 𝑚′

𝑖(𝑡), and the survival submodel is defined as

ℎ𝑖(𝑡) = ℎ0(𝑡) exp{𝛾𝛾𝛾′𝑤𝑤𝑤𝑖 + 𝛼1𝑚𝑖(𝑡) + 𝛼2𝑚
′
𝑖(𝑡)}. (2.5.1)

In this parameterization, the interpretation of parameter 𝛼1 is the same as 𝛼 in the standard
joint model, and 𝛼2 can be interpreted as a measure of the association between the slope, or
the rate of change, of the longitudinal trajectory at time 𝑡 and the risk for an event at that
same time. This joint model has been utilized in the study of HIV infected patients’ disease
progression (WU et al., 2011), as well as the risk for preterm birth in women with type 1
diabetes (GUPTA et al., 2020).

2.5.3 Cumulative Effects
Another parameterization of the joint model can be done considering the integral of the

longitudinal trajectory up to a time point 𝑡. This specification differs from the previous ones by
taking into account the entire previous history of the longitudinal outcome, instead of assuming
the risk for an event at time 𝑡 depends only on the value of the longitudinal outcome at that
same time point. Referred to as "cumulative effects" parameterization, the survival submodel
takes the form

ℎ𝑖(𝑡) = ℎ0(𝑡) exp{𝛾𝛾𝛾′𝑤𝑤𝑤𝑖 + 𝛼3

∫︁ 𝑡

0
𝑚𝑖(𝑠)𝑑𝑠}, (2.5.2)

and parameter 𝛼3 now measures the association between the risk for an event at time 𝑡

and the area under the longitudinal trajectory up to that same time 𝑡. Mauff et al. (2017)
explored applications of this parameteriztion in the prediction of the survival of patients with
primary biliary cirrhosis using longitudinal serum billirubin measurements, and Brown, Ibrahim
e DeGruttola (2005) applied this parameterization to the modeling of viral load and time to
event data from an AIDS clinical trial.
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2.5.4 Lagged effects
Lastly, the "lagged effects" parameterization is one especially useful when a treatment or

patient characteristic may present delayed or ongoing effect even after it is no longer present. In
such cases, a joint model can be specified such that the risk of an event at time 𝑡 is dependent
on the true value of the longitudinal marker at time 𝑡 − 𝑐, where 𝑐 represents the time lag of
interest:

ℎ𝑖(𝑡) = ℎ0(𝑡) exp{𝛾𝛾𝛾′𝑤𝑤𝑤𝑖 + 𝛼4𝑚𝑖{max(𝑡 − 𝑐, 0)}. (2.5.3)

Each of the ℎ𝑖(𝑡) parameterizations presented is incorporated into expression 2.4.5 for the
definition of the joint likelihood function and estimation process.
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Chapter 3

Applications

The joint model methodology has been demonstrated in sections 3.1 and 3.2 with two
separate applications to datasets that contain longitudinal biomarkers and time to event out-
comes. Each section begins with an introduction regarding the data’s clinical importance and
includes descriptive analyses, joint modeling in several parameterizations, and subsections for
the discussion of the results and conclusion.

All statistical analysis was done using the R software (R Core Team, 2022), and the
packages survival (THERNEAU, 2022), nlme (PINHEIRO; BATES; R Core Team, 2022) and
JM (RIZOPOULOS, 2010).

3.1 Longitudinal chloride and COVID-19 dataset
In this study, the aforementioned methods are applied to the data of 58 patients admitted

to an intensive care unit for the treatment of COVID-19. These patients spent a minimum of
two and a maximum of 58 days in the ICU, and the median ICU time was 12.5 days. A total
of 21 patients died during the course of their ICU stay.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for
coronavirus disease 2019 (COVID-19), has been a major health concern worldwide since its
emergence in December of 2019. As a respiratory disease that can progress to severe stages,
affecting multiple organs and systems, it is important to understand the dynamics of laboratory
parameters that indicate disease progression and future prognosis (TEZCAN et al., 2020).

Electrolytes are essential for human life and have important roles in maintaining and regu-
lating cellular functions in the human body (SHRIMANKER; BHATTARAI, 2022). Imbalances
in serum electrolytes can have great consequences if not promptly dealt with, especially when
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associated with severe diseases such as COVID-19. Different imbalances in electrolytes have
been associated with severe illness and poor outcomes in COVID-19 patients (SULTANA et
al., 2020; TEZCAN et al., 2020), and therefore their monitoring may have important impli-
cations in the management and prognosis of critically ill patients. Chloride is an important
electrolyte, found predominantly in the extracellular fluid. Chloride levels are regulated by kid-
ney function, and its imbalance can lead to excess water gain conditions such as congestive
heart failure (SHRIMANKER; BHATTARAI, 2022). The presence of low chloride levels, known
as hypochloraemia, in particular, has been associated with higher frequencies of ICU admis-
sion, use of mechanical ventilation and mortality (TEZCAN et al., 2020), as well as with the
development of acute kidney injury (KIMURA et al., 2020).

Although electrolyte imbalances reported in cross-sectional studies might be related to
underlying patient characteristics, the pathological processes that occur as a consequence of
COVID-19 itself can also be related to imbalances during the disease course. Particularly, SARS-
Cov-2 acts directly on the renin-aldosterone-angiotensin system, which regulates electrolyte
homeostasis (POURFRIDONI et al., 2021). It has been suggested that electrolyte levels may
be sucessful indicators of disease progression (ATILA et al., 2021), and that the correction of
unbalanced levels may improve patient outcomes (TAN et al., 2020; FLOR et al., 2021).

Abnormal chloride measures at hospital admission have been found to be associated with
poor prognosis and overall mortality (TEZCAN et al., 2020) through logistic regression analysis.
However, these results only take into account the status of chloride deregulation at the time of
presentation, given the cross sectional nature of the studies. By evaluating disease progression
over time, longitudinal measures can be used to increase the performance of regression models.

In this study we aim to examine serum chloride concentration alterations of COVID-19
patients being treated in the intensive care unit (ICU) of the Security Forces Hospital in Saudi
Arabia, measured daily from admission to discharge or death, and explore the association
between these longitudinal measures and patient survival via joint models.

A version of this study has been submitted to the Revista Brasileira de Terapia Intensiva
for peer review and publication.

3.1.1 Descriptive Analysis
The dataset contains 16 female and 42 male patients, ranging from 27 to 87 years of age.

The median age was 57 years. 29 patients presented with a diagnosis of hypertension and 3
with coronary artery disease. 2 patients had been previously diagnosed with heart failure, 17
with hyperlipidemia and 33 with diabetes. Chronic obstructive pulmonary disease was present
in one patient, chronic kidney disease in 7, and 4 had a history of stroke. These characteristics



Chapter 3. Applications 29

can be observed according to patients outcomes in Table 1.

Table 1 – Baseline sample characteristics according to patient’s outcome.

Variable Died Survived p-value
Age, years 65.0 (56.0-72.0) 52.0 (43.0-62.0) 0.015
Sex Male 17 (40.5%) 25 (59.5%) 0.365Female 4 (25.0%) 12 (75.0%)
Hypertension 12 (41.4%) 17 (58.6%) 0.585
Coronary Artery Disease 2 (66.7%) 1 (33.3%) 0.546
Heart Failure 2 (100.0%) 0 (0.0%) 0.127
Hyperlipidemia 6 (35.3%) 11 (64.7%) 1
Diabetes 12 (36.4%) 21 (63.6%) 1
Chronic Obstructive Pulmonary Disease 1 (100.0%) 0 (0.0%) 0.362
Chronic Kidney Disease 3 (42.9%) 4 (57.1%) 0.695
History of Stroke 1 (25.0%) 3 (75.0%) 1
Days in ICU 14.0 (6.0-24.0) 12.0 (7.0-21.0) 0.852

Values are absolute and relative frequencies for categorical variables, median and interquartile
range for numerical variables. p-values refer to Fisher’s exact test or Mann-Whitney’s U test,
accordingly.

3.1.1.1 Longitudinal Measurements of Chloride Concentration

Given the normal range of chloride between 98 mmol/L and 106 mmol/L, fifteen patients
were hypochloraemic when admitted to the ICU, while 6 presented with hyperchloraemia. 32
patients measured Chloride below the lower limit of the normal range at some point in their
ICU stay, while 34 measured above the upper limit on at least one occasion. The profile charts
allow us to visualize each patient’s sodium trajectory over the course of their treatment in the
ICU, both for deceased and discharged patients (Figure 3.1.1).

Figure 3.1.1 – Profile chart of chloride over time according to patient outcome. Shaded area
represents values within the normal range.
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As can be seen in the charts, chloride measurements show reasonable variation over time
for each subject. Each patient can present to the ICU with different baseline measurements
as well as different trends over time. A slight difference in overall trajectories is suggested by
the profile chart, given that patients whose outcome was death appear to have decreasing
levels of chloride over time, while discharged patients show stable or increasing measurements
throughout their ICU stay. These observations suggest that a linear ME model for these
longitudinal trajectories might benefit from a random intercept term as well as a random slope
term.

3.1.1.2 Patient Survival

As for the survival outcome, we can use the Kaplan-Meier estimator to estimate a median
survival time of 27 days for the overall sample, as well as observe the rate at which the survival
probability declines (Figure 3.1.2).

Figure 3.1.2 – Kaplan-Meier curve for overall survival

The Kaplan-Meier estimator was also used to plot different survival curves according to
patient’s age, and a large gap can be observed between the two curves in Figure 3.1.3, which
suggests that age is a determining factor when estimating risk of death in the ICU. Median
survival time was estimated at 42 days for those under 60 years of age, and 24 days for those
60 years or older.
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Figure 3.1.3 – Kaplan-Meier curve for survival according to age

3.1.2 Longitudinal and Survival Submodels
The longitudinal submodel for Chloride measurements is a linear mixed effects model with

random intercept and random slopes. Patients’ scaled age was used as a covariable, such that
one unit of 𝐴𝑔𝑒𝑆𝑐𝑎𝑙𝑒𝑑 corresponds to one standard deviation of 14.4 years from the mean of
56.7 years, and time in the icu was also reparameterized so that one unit of 𝑇𝑖𝑚𝑒 corresponds
to 3 days in the ICU.

The model expression is defined,

𝐶ℎ𝑙𝑜𝑟𝑖𝑑𝑒𝑖𝑗 = 𝛽0 + �̂�0𝑖 + (𝛽1 + �̂�1𝑖) * 𝑇𝑖𝑚𝑒𝑖𝑗 + 𝛽2 * 𝐴𝑔𝑒𝑆𝑐𝑎𝑙𝑒𝑑𝑖 + 𝑒𝑖𝑗, (3.1.1)

and the REML estimates, as well as corresponding tests of significance and p-values are present
in Table 2. Standard deviations for the intercept and slope random effects were estimated as
4.895 and 1.179, respectively, and the correlation between them was -0.627.

Table 2 – REML estimates for the longitudinal submodel
Fixed Effects Coefficient Std. Error DF t-value p-value
Intercept 102.245 0.705 897 144.964 0.0000
AgeScaled -0.114 0.538 56 -0.212 0.833
Time 0.198 0.203 897 0.976 0.329

The survival submodel is a proportional hazards regression model, where patients who did
not die during their ICU stay are considered censored. Individuals’ age was also included in the
model as a covariable, scaled in the same way as mentioned for the ME model. The model
with unspecified baseline hazard function was estimated via maximum likelihood, resulting
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in a coefficient of 0.519 (standard error: 0.227, z-value: 2.284, p-value: 0.022) for age. The
exponentiated coefficient resulted in 1.68, meaning the hazard of death in patients 14.4 years
older was 68% higher than in patients with the mean age of 56.7 years.

These two submodels were used to estimate the joint models described in the next section.

3.1.3 Joint Models
For the joint model specification, to avoid underestimation of the standard errors, the

baseline hazard function of the survival part was assumed to follow a Weibull distribution.
Notably, changes in parameter estimates can occur due to the nature of the missing mechanism
being assumed for the data in the longitudinal case, and due to adjustment to the time varying
covariate in the survival case.

3.1.3.1 Current Value Parameterization

Under the "current value" parameterization, we can observe changes in the estimated
coefficients for both parts of the model (Table 3), in spite of a non-significant association
parameter 𝛼 = −0.010. In this model, patients’ older age was associated with lower Chloride
measurements, and time progression was generally associated with increase in Chloride, on
average. Age was also associated with increased risk of death during ICU stay. The 𝑙𝑜𝑔(𝑠ℎ𝑎𝑝𝑒)
and 𝑆𝑐𝑎𝑙𝑒 estimates refer to the baseline Weibull risk function parameters.

Table 3 – Current value joint model estimates
Variance Components Std. Deviation Corr

Intercept 5.258
Time 1.167 -0.642

Residual 4.001

Coefficient Std. Error p-value
Longitudinal Process
Intercept 100.629 0.605 0.0000
AgeScaled -0.764 0.344 0.026
Time 0.387 0.085 0.0000
Event Process
Intercept -3.759 1.209 0.002
AgeScaled 0.497 0.225 0.027
𝛼 -0.010 0.011 0.352
log(shape) 0.268 0.164 0.102
Scale: 1.307
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3.1.3.2 Time-Dependent Slope Parameterization

Adding an association parameter that corresponds to the effect of the slope of the longi-
tudinal trajectory in the survival process provides a significant relationship between the two
processes. Although other estimates remain relatively stable, the results from this parame-
terization imply that negative slopes are associated with increased risk of death during ICU,
while positive slopes are associated with lower risk of death (Table 4). These results are in
agreement with the previous graphical analysis that showed decreasing levels of Chloride in
deceased patients in the course of their ICU stay, and also characterizes the dropout process
generated by patients’ deaths as MNAR, contrary to what would have been inferred by the
previous parameterization.

Table 4 – Time-dependent slope joint model estimates
Variance Components Std. Deviation Corr

Intercept 5.166
Time 1.064 -0.623

Residual 4.015

Coefficient Std. Error p-value
Longitudinal Process
Intercept 100.612 0.533 0.0000
AgeScaled -0.732 0.299 0.015
Time 0.384 0.075 0.0000
Event Process
Intercept -6.934 1.907 0.003
AgeScaled 0.542 0.244 0.026
𝛼1 -0.016 0.014 0.259
𝛼2 -1.024 0.486 0.035
log(shape) 0.372 0.182 0.040
Scale: 1.45

3.1.3.3 Cumulative Effects Parameterization

While in the previous model we included the longitudinal trajectory’s derivative with respect
to time in the linear predictor of the event process, in this parameterization we include the
integral of that same trajectory with respect to time instead, this way taking the entire previous
history of the longitudinal biomarker into account when estimating the risk of death at each
time point. As presented in Table 5, The association parameter corresponding to the area
under the previous longitudinal trajectory was not significant in estimating risk of death.



Chapter 3. Applications 34

Table 5 – Cumulative effects joint model estimates
Variance Components Std. Deviation Corr

Intercept 5.227
Time 1.154 -0.635

Residual 4.003

Coefficient Std. Error p-value
Longitudinal Process
Intercept 100.525 0.891 0.0000
AgeScaled -0.746 0.478 0.118
Time 0.403 0.127 0.001
Event Process
Intercept -4.498 0.794 0.0000
AgeScaled 0.475 0.219 0.031
𝛼3 0.0001 0.0002 0.693
log(shape) 0.144 0.265 0.587
Scale: 1.155

3.1.4 Analysis of Residuals and Model Diagnostics
To assess the fit of the longitudinal part of the joint model, standardized marginal(Figure

3.1.4) and conditional (Figure 3.1.5) residuals were plotted against fitted values. The first plot
represents individuals deviation from the fixed part of the model, while the second represents
their deviation from their individual predictions, taking subject-specific random effects into
account. These residuals should appear randomly distributed around the mean of zero, which
is more clear in the conditional residuals plots than in the marginal residuals plots. When not
accounting for random effects, higher chloride values seem to be somewhat underestimated by
the fixed part of the model, but this lack of fit is resolved when the random effects are taken
into consideration.

When it comes to the comparison between the three fitted models, they all seem to be
considerably similar, which is expected, since the difference between them is the linear predictor
of the survival part. Subject-specific residuals were also plotted against the theoretical quantiles
of a normal distribution (Figure 3.1.6), where they should appear to closely follow the diagonal
line, which is true for all three parameterizations.
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Figure 3.1.4 – Standardized marginal residuals and fitted values for (a) current value (b) time-
dependent slope and (c) cumulative effects models. Solid black lines represent
loess curves.

[a] [b]

[c]
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Figure 3.1.5 – Standardized subject-specific residuals and fitted values for (a) current value
(b) time-dependent slope and (c) cumulative effects models. Solid black lines
represent loess curves.

[a] [b]

[c]

Figure 3.1.6 – Normal Q-Q plots for (a) current value (b) time-dependent slope and (c) cu-
mulative effects models

[a] [b]

[c]
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Martingale residuals and Cox-Snell residuals were used to verify model assumptions for
the survival part. In the martingale residuals represented in Figure 3.1.7, we expect to see a
relatively straight horizontal line in the loess curve, paralell to the horizontal axis, indicating
that the relationship between the longitudinal measures and the survival process had been
correctly specified. However, an apparent lack of fit for smaller values of chloride can be
explained by the imbalance in observations caused by the missing process itself, as explained
in detail by Rizopoulos (2012). It is reasonable to assume that the smoothed curve would
appear much straighter if the longitudinal trajectories had not been truncated by death or
censoring. When it comes to comparing the three model specifications, the time-dependent
slope parameterization seems to be the one that leads to the straighter smoothing curve, and
therefore the relationship between the two processes might be better specified.

Figure 3.1.7 – Martingale residuals and fitted values for (a) current value (b) time-dependent
slope and (c) cumulative effects models. Solid grey lines represent loess curves.

[a] [b]

[c]

Cox-Snell residuals, represented in Figure 3.1.8, should have a survival function that closely
resembles a unit exponential, when the model is correctly specified. The residuals kaplan-meier
estimator and 95% confidence interval are represented so that the unit exponential must be
contained in the interval, therefore not exhibiting evidence that this assumption is violated.
All three model specifications show a reasonable resemblance between the estimated survival
curve and the unit exponential curve.
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Figure 3.1.8 – Kaplan-Meier estimator of Cox-Snell residuals for (a) current value (b) time-
dependent slope and (c) cumulative effects models. Dashed lines represent the
estimator’s 95% confidence interval, solid grey lines represent the unit expo-
nential.

[a] [b]

[c]

Given that all three model specifications seem to fit the data reasonably well, the Akaike
Information Criteria (AIC), Bayesian Information Criteria (BIC) and log-likelihood values for
each model are presented in Table 6. Ideally, the model that best fits the data while remain-
ing parsimonious would have the highest log-likelihood value, as well as the lowest AIC and
BIC values. The model with the time-dependent slope parameterization has all of those char-
acteristics, and its improvement in fit when compared to the current value model is further
confirmed by the likelihood ratio test (Table 7), which can be employed in this case given that
the two models are nested. Therefore, the time-dependent slope model was chosen for further
interpretation of its practical value.

Table 6 – Measures of model fitness
Parameterization Log-likelihood AIC BIC

Current Value -2896.728 5715.457 5838.122
Time-Dependent Slope -2892.396 5808.792 5833.517

Cumulative Effects -2895.863 5815.725 5840.451
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Table 7 – Likelihood ratio test results
First model Second model Test statistic p-value

Current Value Time-Dependent Slope 8.66 0.003

3.1.5 Discussion
This study’s results have found that, as an essential electrolyte, chloride has an important

role in describing the progression of COVID-19 disease in severely ill patients being treated
in the ICU. Chloride imbalances have previously been associated with mortality in critically ill
patients (JI; LI, 2021; MARTTINEN et al., 2016), and in patients with severe acute conditions
(GRODIN et al., 2015; MAATEN et al., 2016). A study of hospitalized patients suffering from
acute heart failure found that newly developed or persistent hypochloraemia was associated
with increased mortality, while baseline hypochloraemia that resolved within 14 days was not
(MAATEN et al., 2016). These findings are in accordance with the results of the present study,
where the rate of decrease in chloride concentration was significantly associated with lower
survival time, while increase in chloride concentration was associated with increased survival.
These results also highlight the importance of longitudinal studies that take into account the
dynamics of these biomarkers over time in hospitalized patients.

Hypochloraemia in ICU patients may be related to gastrointestinal or renal losses of chloride
ions, which can occur in the presence of renal disorders, gastrointestinal symptoms such as
vomiting, and congestive heart failure (BANDAK; KASHANI, 2017). Acute renal involvement
is not unexpected in COVID-19 patients, and is correlated with poor outcomes and higher
mortality in these patients (POURFRIDONI et al., 2021). Gastrointestinal symptoms such as
abdominal pain and vomiting have also been widely reported in relation to this disease (HENRY
et al., 2020). COVID-19 disease has also been reported to increase the odds of development
of acute heart failure in both previously healthy patients (BADER et al., 2021) and patients
with previous history of heart failure (REY et al., 2020). Combined with the present study,
previous investigations suggest that the effects of COVID-19 infection on kidney and heart
function may translate into lowering chloride levels, making it an important marker of disease
progression and poor prognosis.

3.1.6 Conclusion
Although limited by its small sample and observational nature, this longitudinal study

can provide valuable insight into the dynamics of COVID-19 infection in severely ill patients.
Our results bring attention to the increase in information that can be found when collecting
data from patients at many time points, instead of limiting data collection to the moment of
hospital admission, especially considering traditional regression models, other than the joint



Chapter 3. Applications 40

model presented in this work, would not be able to evaluate the significance of the longitudinal
trajectory’s slope on the survival time. This information can lead to a better understanding
of the disease and its consequences. Moreover, monitoring patients over time, when possible,
can be extremely useful to identify changes in their prognosis, which, in collaboration with well
trained dynamic algorithms, can even be done automatically, relieving some of the burden of
healthcare professionals by aiding them in informed decision making, consequently reducing
costs and contributing to patient-focused quality healthcare services.

3.2 HIV coinfection dataset
In this study, the joint model methodology is used to explore the relationship between the

quantity of a specific type of white blood cell, CD4 lymphocytes, and the time of treatment
necessary to reach a healthy CD4/CD8 cell count ratio in HIV patients coinfected with the
hepatitis B and hepatitis C viruses (HBV and HCV). While absolute CD4 cell count has been
an established predictor of HIV disease progression, evidence suggests that the ratio between
CD4 and CD8 cells might be an even better marker of immune dysfunction in HIV patients
treated using antiretroviral therapy (ART). While long-term use of ART is known to increase
CD4 cell count to a normal range on up to 80% of HIV patients, in many cases CD8 cells
remain elevated through years of treatment, resulting in low CD4/CD8 ratios (LU et al., 2015;
HELLEBERG et al., 2015). A lower CD4/CD8 cell ratio in HIV patients has been associated
with higher non-AIDS related mortality even when CD4 cell count is at a normal range (LU
et al., 2015).

HBV and HCV share common routes of transmission with HIV, leading to a prevalence of
up to 30% of coinfection among HIV patients (BONACINI et al., 2004). Individuals with these
conditions in addition to HIV are at a larger risk of hospitalization and liver-related mortality
(BONACINI et al., 2004; ANDREONI et al., 2012). HBV and HCV have also been reported
to prevent immunological recovery in HIV patients, although the impact of these diseases on
CD4 cell count and CD4/CD8 ratio are still a subject of ongoing investigation (SILVA et al.,
2018).

3.2.1 Descriptive analysis
This data originates from a retrospective cohort study of individuals diagnosed with HIV and

coinfected with HBV and HCV between 2002 and 2016 in the cities of Cascavel and Maringá,
in the south region of Brazil. The sample consisted of 147 individuals with a minimum of 3 and
a maximum of 16 measures of CD4 and CD8 cells available for a follow up of up to 4 years.
The event of interest was defined as the patient reaching a ratio of CD4/CD8 cells above or
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equal to 0.9, indicating a healthy immune system in HIV infected patients.

108 individuals belonged to the control group, meaning they were infected exclusively by
HIV, and 34 of them experienced the event. 21 individuals were infected by HIV and HBV
simultaneously, and 3 of those experienced the event, and 18 were infected by HIV and HCV
simultaneously, of which 8 experienced the event during follow up.

As previously described by (BRUM; PREVIDELLI, 2018), CD4 cell count presents a dis-
tribution that is asymmetric, but the square root transformation corrects this behaviour and
any heterokedasticity that may occur as a consequence of larger values being accompanied by
larger variability. Each group’s mean trajectory suggests that HCV and HBV coinfections are
associated with differences in CD4 cell count when compared to the control group and with
each other (Figure 3.2.1). Figure 3.2.2 also provides evidence that between-subject variability
is present at baseline, which could be accommodated by a random intercept term, and that
slopes vary between subjects during follow-up, suggesting the model for this data can benefit
from a random slope term.

Figure 3.2.1 – Mean
√

𝐶𝐷4 trajectories by group



Chapter 3. Applications 42

Figure 3.2.2 – Profile charts of
√

𝐶𝐷4 over time

3.2.2 Longitudinal and survival submodels
The longitudinal submodel for

√
𝐶𝐷4 cell count over time is a mixed-effects linear model

where the patient’s group is a covariate that interacts with time, the number of months of
follow-up. Two random effects are specified, one for the intercept and one for the slope. This
model’s coefficients are presented on Table 8 and random effects’ standard deviations were
estimated at 3.906 for the intercept and 0.126 for the slope. Time of follow-up was the only
statistically significant variable at the 5% level of significance, indicating there was an average
increase in

√
𝐶𝐷4 values over time.

Table 8 – REML estimates for the longitudinal submodel of
√

𝐶𝐷4

Fixed Effects Coefficient Std. Error DF t-value p-value
Intercept 17.107 0.409 897 41.855 <0.001
HBV 1.336 1.011 144 1.322 0.188
HCV -1.989 1.080 144 -1.842 0.068
Time (months) 0.138 0.015 897 9.105 <0.001
HBV*Time (months) -0.014 0.036 897 -0.390 0.696
HCV*Time (months) 0.008 0.040 897 0.191 0.849

For the survival submodel, patients who did not reach a CD4/CD8 cell count ratio of 0.9
had their observations censored. The coinfection group was used as a covariable in this model
but did not show statistical significance (HR = 0.373, p = 0.102 for HBV and HR = 1.302,
p = 0.510 for HCV).
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These submodels were used in the subsequent estimation of the joint models presented in
the next section.

3.2.3 Joint models
Four different parameterizations of the joint model were fit to this data. Each of them has

in common the two submodels utilized and the baseline hazard function, which was assumed
to follow a Weibull distribution.

Under the current value parameterization (Table 9), we found a significant association pa-
rameter 𝛼1 = 0.048, corresponding to a Hazard Ratio (HR) of 1.049, which can be interpreted
as a risk of event 4.9% higher at a certain time point for each unit of increase in the square
root of CD4 cell count at that time. Taking this association into account also factored into the
estimation of the longitudinal process coefficients, and the HCV coinfected group is now sig-
nificantly different from the control group regarding mean square root CD4 cell counts. Along
with the longitudinal marker, the HBV coinfection was also a significant factor in determining
the risk of acquiring a healthy CD4/CD8 ratio, and the HR of 0.258 indicates patients infected
with HBV were around 25% as likely as controls to achieve a healthy CD4/CD8 ratio.

Table 9 – Current value joint model for
√

𝐶𝐷4 and time to event
Variance Components Std. Deviation Corr

Intercept 3.860
Time 0.126 -0.232

Residual 2.489

Coefficient Std. Error p-vale
Longitudinal Process
Intercept 17.187 0.394 <0.001
HBV 1.343 0.695 0.053
HCV -2.906 0.725 <0.001
Time (Months) 0.139 0.012 <0.001
HBV * Time (Months) -0.016 0.027 0.555
HCV * Time (Months) 0.021 0.028 0.464

Intercept -6.799 0.684 <0.001
HBV -1.355 0.636 0.033
HCV 0.219 0.401 0.585
𝛼1 0.048 0.015 0.002
log(shape) 0.081 0.156 0.605
Scale: 1.084

Similarly, when using the time-lagged parameterization (Table 10), with a time lag of 6
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months, both time and HCV coinfection had significant effects on the square root of CD4 cell
counts, and the cell count and HBV coinfection were significantly associated with the risk of
event.

Table 10 – Six months lagged joint model
√

𝐶𝐷4 and time to event
Variance Components Std. Deviation Corr

Intercept 3.863
Time 0.126 -0.234

Residual 2.490

Coefficient Std. Error p-vale
Longitudinal Process
Intercept 17.189 0.394 <0.001
HBV 1.336 0.694 0.054
HCV -2.894 0.733 <0.001
Time (Months) 0.139 0.012 <0.001
HBV * Time (Months) -0.016 0.027 0.565
HCV * Time (Months) 0.021 0.028 0.468

Intercept -6.754 0.681 <0.001
HBV -1.313 0.629 0.037
HCV 0.219 0.399 0.583
𝛼1 (lag = 6) 0.047 0.016 0.003
log(shape) 0.085 0.154 0.579
Scale: 1.089

The time-dependent slopes parameterization introduces a new parameter 𝛼2, representing
the effect of the slope of the longitudinal trajectory of the square root of the CD4 cell count on
the time to event outcome. The inclusion of this parameter caused the current value association
parameter to loose significance, while a positive slope of the CD4 trajectory was associated
with a significant increase in the hazard of the event. Considering the standard deviation of the
random effect associated with the slope was estimated at 0.131, an increase of one standard
deviation in the slope was associated with over 3.25 times the hazard of reaching a healthy
CD4/CD8 ratio at a certain time point. HBV coinfection remained associated with a decreased
risk of the event.
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Table 11 – Time-dependent slopes joint model for
√

𝐶𝐷4 and time to event
Variance Components Std. Deviation Corr

Intercept 3.742
Time 0.131 -0.167

Residual 2.493

Coefficient Std. Error p-vale
Longitudinal Process
Intercept 17.090 0.398 <0.001
HBV 1.467 0.707 0.038
HCV -2.945 0.664 <0.001
Time (Months) 0.144 0.012 <0.001
HBV * Time (Months) -0.021 0.027 0.437
HCV * Time (Months) 0.021 0.031 0.501

Intercept -9.447 1.394 <0.001
HBV -1.605 0.696 0.021
HCV 0.0001 0.451 0.999
𝛼1 -0.015 0.027 0.572
𝛼2 9.017 2.525 <0.001
log(shape) 0.528 0.199 0.008
Scale: 1.695

Finally, the cumulative effects parameterization was used (Table 12), in an effort to take
into account each patients’ previous history of the longitudinal biomarker. HCV coinfection
and follow-up time remained significantly associated with the CD4 cell count, but there were
no associations with the time-to-event outcome in this scenario.
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Table 12 – Cumulative effects joint model with cumulative effects for
√

𝐶𝐷4 and time to
event

Variance Components Std. Deviation Corr
Intercept 3.866

Time 0.125 -0.239
Residual 2.492

Coefficient Std. Error p-vale
Longitudinal Process
Intercept 17.180 0.399 <0.001
HBV 1.331 0.690 0.054
HCV -2.826 0.786 <0.001
Time (Months) 0.139 0.012 <0.001
HBV * Time (Months) -0.015 0.027 0.595
HCV * Time (Months) 0.018 0.028 0.523

Intercept -6.602 0.888 <0.001
HBV -0.969 0.606 0.110
HCV 0.215 0.395 0.586
𝛼3 0.001 0.001 0.954
log(shape) 0.252 0.179 0.157
Scale: 1.287

3.2.4 Analysis of residuals and model selection
In order to evaluate each model’s fit to the data, we conducted an analysis of relevant

types of residuals. Since the longitudinal part of the model is specified in the same way for
each parameterization, we do not expect to see any relevant changes in the residuals. However,
there may be an increase or decrease in model adequacy when considering the survival process
residuals.

The standardized marginal (Figure 3.2.3) and subject-specific (Figure 3.2.4) residuals be-
have as expected, with no clear indication of assumption violations. The inclusion of the
random effects in the model corrects most of the heterokedasticity that is apparent on the
marginal residuals. In addition, the normal quantile plots (Figure 3.2.5) for each model also
do not show differences between each other.
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Figure 3.2.3 – Standardized marginal residuals for (a) current value, (b) 6-months lagged, (c)
time-dependent slope and (d) cumulative effects models.

[a] [b]

[c] [d]

Figure 3.2.4 – Subject-specific residuals for (a) current value, (b) 6-months lagged, (c) time-
dependent slope and (d) cumulative effects models.

[a] [b]

[c] [d]
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Figure 3.2.5 – Normal Q-Q plots of subject-specific residuals for (a) current value, (b) 6-
months lagged, (c) time-dependent slope and (d) cumulative effects models.
Solid grey line represents loess curve.

[a] [b]

[c] [d]

Martingale and Cox-Snell residuals were used to evaluate the fit of the survival part of
each model. Martingale residuals (Figure 3.2.6) show reasonable adequacy, considering the
loess curves follow a straight line mostly parallel to the horizontal axis. Cox-Snell residuals,
however, did not fully correspond to the expected behaviour, a Kaplan-Meier curve that does
not significantly differ from an exponential distribution. The model where these residuals
resemble the expected curve the least is the time-dependent slopes parameterization, while
the current value and 6-months lagged parameterizations seem to have almost identical fit
(Figure 3.2.7).
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Figure 3.2.6 – Martingale residuals for (a) current value, (b) 6-months lagged, (c) time-
dependent slope and (d) cumulative effects models. Solid grey line represents
loess curve.

[a] [b]

[c] [d]
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Figure 3.2.7 – Kaplan-Meier estimator of Cox-Snell residuals for (a) current value, (b) 6-
months lagged, (c) time-dependent slope and (d) cumulative effects models.
Dashed lines represent the estimator’s 95% confidence interval, solid grey lines
represent the unit exponential.

[a] [b]

[c] [d]

As additional criteria for comparison between the four models, the AIC, BIC and log-
likelihood values are presented on Table 13. Although the time-dependent slopes parameter-
ization showed some lack of fit on the survival process, it still resulted in the lowest values
for AIC and BIC and the highest log-likelihood. Its improvement in fit is also confirmed by
the likelihood ratio test, which resulted in a test statistic of 18.3 and a p-value below 0.001.
Again, the similarity between the current value and the 6-months lagged model are apparent.

Table 13 – Measures of model fit
Parameterization AIC BIC Log-likelihood

Current value 6063.931 6108.788 -3016.966
6-months lagged 6065.167 6110.023 -3017.583

Time-dependent slopes 6047.669 6095.516 -3007.835
Cumulative effects 6073.913 6118.770 -3021.957

3.2.5 Discussion
When jointly modelling both the square root of the CD4 cell count and the time to event

data, we observed that HCV coinfection becomes a significant variable in estimating the
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biomarker values over time. While the main effect size remains similar throughout the separate
and the joint models, the joint models provide smaller standard errors, increasing the statistical
power of this sample and providing results similar to the ones found when separately modeling√

𝐶𝐷4 via linear mixed effects regression using a larger sample of 3340 individuals (SILVA
et al., 2018), a result that was not observed in the separate estimation of this longitudinal
process.

The current value joint model parameterization had been used previously to analyze this
same dataset in work submitted by Brum and Previdelli to Communications in Statistics: Case
Studies and Data Analysis. Although the model utilized in their analysis did not account for
interactions between coinfection group and time, similar results were found. Our application
adds to the previou one by showing that the current value parameterization and the 6-month
lagged parameterization yielded very similar results, not only in estimated coefficients, but in
model residuals and overall fit measures, indicating that this data has the potential to provide
useful insights on the disease progression and immunologic recovery of HIV patients up to six
months in advance, allowing health professionals to make better informed decisions regarding
patient treatment and prognosis.

In addition, the use of the time-dependent slopes parameterization provides an interest-
ing biological interpretation, given that the current value association parameter is no longer
significant when considering the overal longitudinal trajectory’s slope as a covariate. Given
this result, two patients who present with the same

√
𝐶𝐷4 count at a given time point, but

whose overal trajectories differ in slopes, generate different estimates of time to immunologic
recovery. This result also highlights the importance of longitudinal and long term follow-up of
these patients, given that this interpretation depends on the availability of several time points
of data. In addition, these findings are in accordance to the available literature, that mentions
CD4/CD8 cell ratio may be insufficient even when CD4 cell count is at a healthy range (LU
et al., 2015; SILVA et al., 2018).

3.2.6 Conclusion
Our study suggests an increasing trajectory of CD4 cell count over time may be more

important than the absolute values of CD4 itself when predicting time to immunologic re-
covery. We emphasize that joint modeling can be a useful tool to increase the power of a
relatively small sample of subjects being monitored longitudinally. This application of joint
model parameterizations highlights the different biological interpretations that can be made
with these models, from a simple present-time association, to predictions made ahead of time,
to a more complex relationship between the longitudinal changes in the biomarker and the
time to event. Not only do these applications provide valuable insight into the mechanism of
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disease progression, they also have the potential to become dynamic prognostic tools aiding
healthcare professional in personalized medicine.
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