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RESUMO 

 

A arborização urbana desempenha um papel crucial na manutenção da segurança e 

resiliência dos ambientes urbanos, mas compreender as dinâmicas espaciais e os 

fatores subjacentes aos incidentes de queda de árvores continua sendo um desafio 

complexo. Neste estudo, realizamos uma análise abrangente dos incidentes de queda 

de árvores em Maringá, Paraná, Brasil, de 2015 a 2021, utilizando a estimativa de 

densidade de kernel, análise da função L não-homogênea e modelagem de árvore de 

regressão. Nossas descobertas revelam padrões espaciais intrigantes, com maiores 

concentrações de incidentes nas regiões norte e nordeste da cidade. Além disso, 

identificamos mudanças dinâmicas nas distribuições espaciais ao longo do tempo, 

enfatizando a necessidade de planejamento urbano proativo e estratégias de 

gerenciamento de riscos. A análise de árvore de regressão destacou fatores 

meteorológicos como contribuintes significativos para as quedas de árvores, fornecendo 

apontamentos para esforços de mitigação de riscos. No geral, nosso estudo contribui 

para uma melhor compreensão das dinâmicas espaciais dos incidentes de queda de 

árvores e defende métodos padronizados de coleta de dados e o desenvolvimento de 

ferramentas para aprimorar o gerenciamento da arboricultura urbana e promover 

ambientes urbanos mais seguros. 

Palavras-chave: Queda de árvores. Estatística Espacial. Função L Não Homogênea. 

Árvores de Regressão. 
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ABSTRACT 

 

Urban forestry plays a crucial role in maintaining the safety and resilience of urban 

environments, yet understanding the spatial dynamics and underlying factors of tree fall 

incidents remains a complex challenge. In this study, we conducted a comprehensive 

analysis of tree fall incidents in Maringá, Paraná, Brazil, from 2015 to 2021, using kernel 

density estimation, inhomogeneous L function analysis, and regression tree modeling. 

Our findings reveal intriguing spatial patterns, with higher concentrations of incidents in 

the northern and northeastern regions of the city. Moreover, we identified dynamic 

changes in spatial distributions over time, emphasizing the need for proactive urban 

planning and risk management strategies. Regression tree analysis highlighted 

meteorological factors as significant contributors to tree falls, providing actionable 

insights for risk mitigation efforts. Overall, our study contributes to a better understanding 

of the spatial dynamics of tree fall incidents and advocates for standardized data 

collection methods and the development of tools to enhance urban forestry management 

and promote safer urban environments. 

Keywords: Tree Fall. Spatial statistics. Inhomogenous L function. Regressions Tree. 
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1. INTRODUCTION 

Urban trees provide a myriad of benefits within urban landscapes. They 

significantly enhance the quality of life by imparting climatological benefits, mitigating the 

urban heat island effect, and reducing rainwater runoff. Additionally, trees contribute to 

the urban environment through financial, ornamental, and social advantages (van 

Haaften, et al., 2021). 

However, despite the numerous advantages trees offer, the occurrence of tree 

falls presents a significant challenge, resulting in material damages and service 

disruptions in many cities worldwide. 

Tree falls in urban areas are a global issue affecting cities from Hong Kong (Jim 

& Zhang, 2013) to Germany (Pretzsch, et al., 2015), from Brazil (Manfra, Massoca, Uras, 

Cavalari, & Locosselli, 2022) to Iran (Shabani & Akbarinia, 2017). As cities expand and 

the concern for ecological initiatives and urban greening to enhance the quality of life for 

residents increases, understanding the challenges associated with urban trees becomes 

paramount. Urban trees face various pressures not encountered in non-anthropogenic 

environments, with a probability of surviving beyond 35 years standing at only 35.1% 

( Smith, Dearborn, & Hutyra, 2019), making their life cycle relatively short. A total of 161 

articles and studies have been published with the aim of studying this issue. 

Scientific literature highlights wind and fungal decay as primary contributors to 

tree falls (van Haaften, et al., 2021) (Schmidt, Gaiser, & Dujesiefken, 2011). In their 2021 

systematic review and meta-analysis, van Haaften et al. reported that, out of a total of 

161 studies, 126 identified wind as the primary cause and 12 identified fungal decay. 

These tree falls can result in significant material and economic losses, as well as 

human fatalities (Schmidlin, 2008). Understanding why and where these trees fall is 

crucial for the development of intervention measures focused on solving or mitigating 

this problem, aiming for better public policy. The “why” allows us to comprehend the 

reasons behind these tree falls, while the “where” points out the locations of the falls, 

enabling us to determine where we can take action and focus our efforts. 

As is typical in many cities with abundant tree cover, Maringá faces challenges 

related to tree falls. Located in the southern region of Brazil, Maringá was honored as a 

“World Tree City” by the FAO-UN and the Arbor Day Foundation for the second 

consecutive year in 2023 (The Arbor Day Foundation, 2023). Globally, only 170 cities 

hold this prestigious designation, with the majority situated in North America and Europe. 

Maringá stands out as one of the 21 recognized cities in Brazil, alongside São Paulo and 
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Rio de Janeiro. Together, these cities have a combined population of 26,278,913 

residents. 

The occurrence of tree falls in Maringá presents a multifaceted problem that 

affects urban infrastructure and citizen welfare. Notably, between 2015 and 2021, there 

were 2,339 reported incidents of tree falls, with the most severe event occurring on 

September 14, 2021. This event affected 339 trees and resulted in widespread power 

outages, as reported by local authorities and local newspapers (RPC Maringá, 2021). 

This study aims to analyze the spatial patterns of tree fall incidents in Maringá, focusing 

on their distribution across the city and the contributing factors during the years under 

investigation. Statistical techniques will aid in identifying spatial patterns of tree fall 

incidents, while machine-learning algorithms will facilitate understanding the factors 

leading to these incidents. By comprehending these patterns and factors, policymakers 

and urban planners can devise effective mitigation strategies to minimize the impact of 

tree falls on urban infrastructure and public safety. 



13  

2. METHODOLOGY 

2.1. Study Area 
The city of Maringá is located in the northwest region of the state of Paraná, Brazil 

(Figure 1), within the phytogeographic domain of the Atlantic Forest and the 

phytoecological region of the Semideciduous Seasonal Forest (Zeidan & Ferreira, 2023). 

Maringa’s climate is classified as subtropical, characterized by rainy summers and dry 

winters (Minaki, 2021). Founded as a municipality in 1951, Maringá is characterized by 

its urban planning inspired by the project conceived by Jorge de Macedo Vieira, based 

on the garden city proposals published by Ebenezer Howard in 1902 (Rego, 2001). With 

a population of 409,657 inhabitants and a high urbanization rate exceeding 90% [14], 

the city has approximately 163,000 trees in its urban landscape (The Arbor Day 

Foundation, 2023). 

Figure 1: Maringá, Paraná, Brazil 
 

 
Source: Open Street Maps (2021) and IBGE (2022) 
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2.2. Database 
In this study, we utilized a dataset comprising 2,339 tree fall reports sourced from 

the Environmental Institute of Maringá (IAM). These reports included essential 

information such as address or geographical coordinates, and other details described in 

the table below (Table 1). 

Table 1: Variables of the database 
 

Variable Code Description 

Identification ID Individual identification number 

Date Date Date of the record 

Species SPECIES Common name of the species 

Address Address Address with Street Name, 

Number, and Neighborhood of 

the record 

Latitude (°) Lat Latitude of the fall record 

measured in degrees 

Longitude (°) Long Longitude of   the   fall   record 

measured in degrees 

Precipitation (mm) PRECIPITATION Accumulated precipitation in 

millimeters on the day of the 

record 

Atmospheric Pressure (hPa) PRESSURE AT Atmospheric pressure in 

hectopascals recorded on the 

day 

Maximum Temperature (°C) MAX TEMPERATURE Maximum temperature in 

degrees Celsius recorded on the 

day 

Average Temperature (°C) AV TEMPERATURE Average temperature in degrees 

Celsius recorded on the day 

Minimum Temperature (°C) MIN TEMPERATURE Minimum temperature in degrees 

Celsius recorded on the day 

Maximum Wind Gust (m/s) MAX WIND GUST Maximum wind speed in meters 

per second recorded on the day 

Average Wind Speed (m/s) AV WIND SPEED Average wind speed in meters 

per second on the day of the 

record 

Neighborhood Age NEIGHBORHOOD AGE Age of the neighborhood where 

the tree is located 

Source: Environmental Institute of Maringá (2021) 

 
When geographical coordinates were absent, we undertook geocoding efforts to 

determine the tree fall locations. Between the years 2015 and 2021, 1,481 reports were 

successfully geocoded, representing approximately 63.32% of the dataset (Table 2). 
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Unfortunately, the spatial information for the remaining data was lost due to insufficient 

locational details, such as imprecise addresses, missing numbers, and incorrectly written 

street names. 

Table 2: Geocoding Data Loss Percentage per year - 2015 to 2021 
 

Year Reports Geocoded Reports Missing data (%) 

2015 99 51 48.48 

2016 226 133 41.15 

2017 419 216 48.45 

2018 659 348 47.19 

2019 228 109 52.19 

2020 203 174 14.29 

2021 505 450 10.89 

2015-2021 2,339 1,481 36.68 

Source: Author's own creation (2024) 

 
Two distinct approaches were employed to analyze the spatial patterns of tree 

falls and the factors that contribute to their occurrence. The first approach involved 

understanding two spatial properties of the data: the first-order properties and the 

second-order properties. For this approach, the R Package 'spastats' (Baddeley & 

Turner, spatstat: An R Package for Analyzing Spatial Point Patterns, 2005) was utilized, 

which is available within the Comprehensive R Archive Network (CRAN). In the second 

approach, we used Regression trees to determine which factors contributed to these 

falls. For this purpose, the 'caret' package in R was employed (Kuhn, 2008). For the 

cartographic representations of the results, we employed the open Geographic 

Information System (GIS) software QGIS 3.28 ‘Firenze’ (QGIS Development Team, 

2022). 

The following section will provide a detailed explanation of these approaches, 

outlining the specific methodologies employed for each analysis. Through systematic 

application of these techniques, our goal is to thoroughly reveal the spatial patterns that 

characterize the occurrence of tree falls in Maringá and identify the contributing factors. 

2.3. First approach – Spatial Analysis: 
In the analysis of point patterns, a crucial focus lies on the precise location of 

phenomena, characterized by a pair of coordinates. This analytical approach centers on 

understanding the distribution of observed events and drawing inferences about the 

underlying processes generating them (Bivand, Pebesma, & Gómez-Rubio, 2013). To 
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effectively unravel this, two key properties of point patterns are studied: first-order 

properties and second-order properties. 

First-order properties measure the distribution of an event in the study area, 

involving the determination of the occurrence intensity of the process (Cressie, 1993).On 

the other hand, second-order properties provide information about the interaction 

between two points, indicating the tendency of events to be distributed in clustered, 

random, or regularly spaced patterns. It measures the spatial structure and types of 

interaction among events in point processes. 

Some studies stand out for a spatial approach, seeking to identify where tree falls 

occur most frequently and mapping areas with higher risk. Among them, we highlight the 

work of Ribeiro and Lopes (2011) which aimed to map risk of tree fall in Lisbon, Portugal. 

Another relevant study is Shabani & Akbarinia (2017) investigation into spatial patterns 

of tree falls using logistic regression and machine learning for the Iranian province of 

Mazandran. This analysis primarily utilized variables from the physical environment to 

examine these patterns. Overall, these studies did not focus on or address the first and 

second-order properties of the spatial distribution of tree falls. 

 
 

2.1.1. First Order Properties 

2.1.1.1. Estimation of intensity through Kernel Smoothing 

To identify first-order properties, it is necessary to estimate the intensity function. 

For this purpose, we employed the quartic kernel smoothing method. The kernel 

smoothing estimator used in this work is represented by the following equation (Bivand, 

Pebesma, & Gómez-Rubio, 2013): 

𝑛 
𝜆̂(𝑥) = 

1 
∑ 𝑘 (

||𝑥 − 𝑥𝑖|| ( ) 

ℎ2 
𝑖 =1 

) /𝑞 ||𝑥|| 
ℎ 

 

Where: 

 
𝑘 = 𝑏𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒 𝑎𝑛𝑑 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐𝑎𝑙 𝑘𝑒𝑟𝑛𝑒𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛. 

 
𝑞 = 𝑏𝑜𝑟𝑑𝑒𝑟 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑜𝑟 𝑢𝑠𝑒𝑑 𝑡𝑜 𝑎𝑐𝑐𝑜𝑢𝑛𝑡 𝑓𝑜𝑟 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑛𝑒𝑎𝑟 𝑡ℎ𝑒 𝑏𝑜𝑟𝑑𝑒𝑟. 

ℎ = 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑀𝑆𝐸. 

The edge correction method utilized was the Jones-Diggle improved edge correction 

(Jones, 1993). The bandwidth parameter was estimated using the Mean Square Error 
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(MSE). The kernel function used was the quartic kernel, whose expression in two 

dimensions is (Bivand, Pebesma, & Gómez-Rubio, 2013): 

3 
(1 − ‖𝑢‖2)2 𝑖𝑓 𝑢 𝜖 (−1,1) 

 

𝑘(𝑢) = { 𝜋 , 
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

Where: 

 
‖𝑢‖2 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑛𝑜𝑟𝑚 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡 𝑢 = (𝑢1, 𝑢2) 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑢2 + 𝑢2. 

1 2 
 

The kernel smoothing process enables the creation of a smooth intensity surface 

that represents the density of events across the study area. By applying this estimator, 

we effectively analyze the spatial distribution of tree fall incidents, revealing areas of high 

and low intensity. 

Furthermore, the intensity was computed both for the entire study period and 

individually for each year. The resulting data were transformed into raster format and 

imported into QGIS 3.28 for the generation of cartographic products. This visualization 

approach aids in the portrayal of the spatial intensity variation over the years and offers 

a comprehensive view of the tree fall incident distribution across Maringá. 

2.1.2. Second Order Properties 

To estimate second order properties, two local functions were employed, the 

Inhomogenous K function and the Inhomogenous L function. n. We chose these 

inhomogeneous functions because the analysis of first order identified the spatial non- 

homogeneity of this distribution and the existence of second-order effects. 

2.1.2.1. Inhomogenous K Function (𝐾𝑖𝑛ℎ𝑜𝑚): 

The Inhomogeneous K function (𝐾̂𝑖𝑛ℎ𝑜𝑚) is a generalization of the homogeneous 

K function, and its estimator, with the edge correction, was proposed as (Baddeley, 

Moller, & Waagepetersen, 2000): 

𝑛 𝑛 

𝐾̂ 
1 (𝑡) = 𝐼𝑡(𝑡𝑖𝑗) ∑  ∑ , 𝑡 ≥ 0, 

𝑖𝑛ℎ𝑜𝑚 
 

|𝐴| 𝑤 𝜆̂(𝑢 )𝜆̂(𝑢 ) 
𝑖=1 (𝑗≠𝑖)=1 𝑖𝑗 𝑖 𝑗 

 

Where: 

 
|𝐴| = 𝑡ℎ𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑟𝑒𝑔𝑖𝑜𝑛 𝐴 

 
𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠 

 
𝑤𝑖𝑗 = 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝑏𝑜𝑟𝑑𝑒𝑟 𝑒𝑓𝑓𝑒𝑐𝑡𝑠 
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𝐼𝑡(𝑡𝑖𝑗) = 𝑎𝑛 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑡ℎ𝑎𝑡 𝑎𝑠𝑠𝑢𝑚𝑒𝑠 1 𝑤ℎ𝑒𝑛 𝑡𝑖𝑗 ≤ 𝑡 

 
The 𝑤𝑖𝑗 corresponds to the proportion of the circumference of the circle centered on 

event 𝑢𝑖 containing 𝑢𝑗 that is within the study region |𝐴|. 

2.1.2.2. Inhomogenous L Function (𝐿𝑖𝑛ℎ𝑜𝑚): 

The estimator of the (𝐿̂𝑖𝑛ℎ𝑜𝑚) is obtained through the transformation of the 𝐾̂𝑖𝑛ℎ𝑜𝑚. 

The formula for the estimator of the 𝐿̂𝑖𝑛ℎ𝑜𝑚  from the 𝐾̂𝑖𝑛ℎ𝑜𝑚, for a distance h, is expressed 

as: 

 
 
 

 

 
The  estimated  𝐿̂𝑖𝑛ℎ𝑜𝑚   is  obtained  from  the  linearization  of  the  𝐾̂𝑖𝑛ℎ𝑜𝑚,  and  to 

facilitate the understanding of the 𝐿̂𝑖𝑛ℎ𝑜𝑚  outcomes, we present an illustrative model that 

aids in their interpretation within the context of spatial point pattern analysis (Figure 2). 

The functions in question evaluate the hypothesis of complete spatial 

randomness, which requires the spatial distribution of the data to be random. To test this 

hypothesis, it is necessary to conduct a Monte Carlo test, based on random samplings 

to obtain results. In the Monte Carlo test used in this study, 1,000 permutations were 

performed to construct an envelope containing the smallest and largest values for each 

point of the calculated function. Tests against the null hypothesis of complete spatial 

randomness within the 𝐾̂𝑖𝑛ℎ𝑜𝑚   and 𝐿̂𝑖𝑛ℎ𝑜𝑚   functions were conducted at a significance 

level of 0.002, a value corresponding to the number of permutations defined previously. 
 

When  the  calculated  𝐿̂𝑖𝑛ℎ𝑜𝑚      function  value  exceeds  the  upper  envelope, 

suggests that the distribution of events in the spatial region is clustered. This signifies a 

cluster process, indicating that events are more closely packed together than would be 

expected under a random distribution. Such a pattern could indicate localized areas of 

high event occurrence. If the calculated value falls below the lower envelope, it signifies 

a regular pattern. This indicates a dispersed process, suggesting that events are more 

evenly spaced than expected under a random distribution. A regular pattern could imply 

a deliberate arrangement or a uniform distribution of events across the study area. 

When  the  calculated  values  of  the  𝐿̂𝑖𝑛ℎ𝑜𝑚   function  fall  within  the  envelope,  it 

indicates a random pattern, providing evidence for the null hypothesis of Complete 
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Spatial Randomness. In this scenario, events are distributed without any discernible 

clustering or regularity. 

Figure 2: L Function graphic model 

 

 
Source: Author's own creation (2023) 

 
By analyzing the calculated values in relation to the envelope, we can ascertain 

whether the observed pattern of events leans towards clustering, dispersion, or 

randomness. This insightful model aids in comprehending the spatial arrangements of 

events and guides the interpretation of the 𝐾̂𝑖𝑛ℎ𝑜𝑚  and 𝐿̂𝑖𝑛ℎ𝑜𝑚    results. 

In our study, this approach will be applied to discern the spatial characteristics of 

tree fall incidents in Maringá. By comparing the calculated values with the envelope, we 

will gain a deeper understanding of the underlying patterns and inform the formulation of 

effective mitigation strategies to address the tree fall problem within the urban landscape. 

2.4. Second approach – Machine Learning Applications: 

 
This approach was based on a study conducted in the city of São Paulo in 2022 

(Manfra, Massoca, Uras, Cavalari, & Locosselli, 2022) which investigated the factors 

leading to tree falls in the city. This study employed a machine learning model known as 

Regression Trees, utilizing variables from both the natural and built environment, such 

as sidewalk width, building height, and neighborhood age. In our work, the Regression 

Tree technique was applied to identify the factors leading to tree falls during windstorms 

in Maringá. Some adaptations were made, with a greater focus on meteorological 

variables, as anthropogenic variables such as building height and sidewalk width were 

not available. 



20  

The Regression Tree method is a supervised learning technique used to 

construct predictive models from a dataset. Regression trees select splits that reduce 

variance and are divided into branches, nodes, and leaves. Target attribute values can 

be predicted from the mean value of the leaves to assess the quality of fit and prediction. 

In this algorithm, the response variable was defined as “Windstorm,” indicating whether 

the tree fell on a day with a recorded windstorm, with more than 30 falls on the same 

day. For the analysis, the database was split, with 20% of the data used for algorithm 

testing and 80% for training. The explanatory variables included in the model were the 

tree species, accumulated precipitation for the day, atmospheric pressure, maximum, 

minimum, and average temperature of the day, maximum wind gust, average wind gust, 

the age of the neighborhood where the tree is located, and the city region. 

 
Since we did not have the age of the trees, we used the age of the neighborhoods 

where they were located, as there is no city-wide policy or plan for tree replacement. In 

most cases, trees are planted at the beginning of the neighborhood construction process. 

 
For this purpose, the tree fall records were also grouped into three regions of the 

city. The criterion for grouping was the Haversine distance, a mathematical formula that 

calculates the distance between two points on the Earth’s surface using their latitude and 

longitude coordinates. The Haversine formula assumes the Earth is a perfect sphere and 

is based on the law of sines, considered one of the most accurate ways to calculate 

distance between two points on Earth. It is defined by the following equation (Azdy & 

Darnis, 2020): 

 

∆𝑙𝑎𝑡 
𝑑 = 2 ∗ 𝑅 ∗ arcsin (√sin2 ( 

2 

∆𝑙𝑜𝑛𝑔 
) + cos(𝑙𝑎𝑡1) ∗ cos(𝑙𝑎𝑡2) ∗ sin2 ( )) 

2 
 
 

The two points considered were the coordinates of incidents and fall records, 

and one of the three delimited points in the city, as we can see below in figure 3. 
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Figure 3: Coordinates of the central points for the three regions 

 

 
Region 1 (-23.403728443766564, -51.90655461940291) comprised records in 

the northeast region of the city. Region 2 (-23.38765853320574, -51.95255986574726) 

comprised records in the north and northwest region, and Region 3 (- 

23.426097031914328, -51.93848363365684) comprised records in the central region. 

he points for the construction of these three regions were chosen because they were the 

centroids of the regions where there were concentrations of tree falls in the city. 

 
Two models were developed: Model I considering all variables and all reports; 

and Model II, considering only incidents recorded in regions 1 and 2. This was done to 

verify if these two regions stood out due to having the highest number of falls and if they 

exhibited a different behavior. To analyze the quality of these models, a confusion matrix 

will be constructed, and accuracy, precision, recall and specificity will be calculated for 

each model. The accuracy of a machine learning classification algorithm shows how 

often the model classifies a data point correctly. 

 
Accuracy = 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 
 

 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 
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The precision represents the proportion of positive identifications that were 

actually correct. 

 
Precision = 

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
 

 

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
 

The recall measures the proportion of positive identifications that were actually 

correct. 

Recall = 
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

 
 

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 
 

In addition, specificity is described as the algorithm/model’s ability to predict a 

true negative of each category available. 

 
Specificity = 

𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 
 

 

𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
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3. RESULTS 

3.1. Intensity Estimated 

For the interval 2015-2021, the bandwidth calculated by the MSE was 250m.When 

analyzing this interval, the kernel analysis unveils a spatial distribution pattern wherein 

fewer reports occurred in the southern region of the city, while a higher number of reports 

were concentrated in the northern region (Figure 4). This spatial trend is particularly 

pronounced, with the most significant cluster of incidents visibly concentrated in the 

northern area, reaching intensities of up to o 70 incidents per square kilometer. 

Figure 4: Tree fall - intensity estimation 2015-2021 

 

 
Source: Author's own creation (2023) 

 
The optimal bandwidth values that minimize the mean square error for the 

kernel density estimation for each year are as follows (Table 3): 
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Table 3: Calculated Bandwidth 2015-2021 
 

Year Calculated Bandwidth (h) 

2015 390 m 

2016 760 m 

2017 890 m 

2018 400 m 

2019 530 m 

2020 1910 m 

2021 230 m 

2015 - 2021 250 m 

Source: Author's own creation (2024) 

 
Over the span of several years, incidents of fallen trees in the city exhibited 

intriguing patterns (Figure 5). In 2015, most of these incidents occurred in the central 

part of the city, with an intensity of approximately 5 fallen trees per square kilometer, 

while the southern region remained incident-free. The subsequent year, 2016, witnessed 

a shift, with incidents concentrating primarily in the northern area. This time, two separate 

clusters emerged, one in the northeast and another in the northwest, solidifying the 

northern region as the focal point for these occurrences, with an intensity of 

approximately 5 incidents per square kilometer. 

Moving to 2017, there was only one notable cluster with an intensity of 6 incidents 

per square kilometer, with most of the incidents occurring in the northern region of the 

city. Then, in 2018, the northeastern part of the city became the primary location for tree 

fall incidents, with an intensity of 20 fallen trees per square kilometer. The trend 

continued into 2019, where most incidents clustered once again in the northern area, 

accompanied by fewer reports in the southern region and a small cluster within the city 

center. 

The year 2020 marked a noteworthy development as tree fall incidents spread 

across the entire city. Clusters of incidents occurred in both the northern and central 

areas, blurring the previously distinct patterns. This year also recorded the lowest 

intensity, registering 2.5 incidents per square kilometer in the areas of highest intensity. 

Finally, in 2021, the northern part of the city exhibited three distinct incident clusters with 

intensities exceeding 35 fallen trees per square kilometer, while the southern region 

experienced relatively fewer occurrences. These changing patterns over the years 

highlight the dynamic nature of tree fall incidents within different regions of the city. 
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Figure 5: Tree fall - evolution of the intensity estimation 2015-2021 

 

 
Source: Author's own creation (2024) 
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3.2. Inhomogenous L Function Results: 

Utilizing the Inhomogenous L Function on the dataset, a discernible trend emerges 

due to the notably elevated calculated 𝐿𝑖𝑛ℎ𝑜𝑚 values. This observation unequivocally 

indicates a clustered pattern within the spatial distribution of points across the 2015-2021 

interval (Figure 6). 

 
Figure 6: Inhomogenous L Function 2015-2021 

 

 
Source: Author's own creation (2023) 

 
When conducting a more granular analysis by evaluating each year 

independently, a consistent outcome is evident. In 2015, the values observed at all 

assessed distances were within the envelope, indicating Complete Spatial Randomness 

for that year. Moving to 2016, a distinctive pattern emerged. Between 600 meters 

and 900 meters, the values exceeded the envelope, revealing clustering at these 

distances. Interestingly, at distances below 600 meters and above 900 meters, 

random patterns were observed. 
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In 2017, a shift was observed. At distances of approximately 250 meters, 

random patterns were identified. Beyond this distance, clustering patterns 

became more pronounced. The year 2018 exhibited a clear clustering pattern, 

with tree falls distributed in a clustered pattern. Contrastingly, 2019 recorded a 

random pattern across all distances. 

In 2020, a distinct clustering pattern reappeared, evident at all distances 

assessed. Continuing this trend, 2021 also demonstrated a clustering pattern in 

the spatial distribution of tree falls. 

Figure 7: Inhomogenous L Function applied to each year individualy 

 

Source: Author's own creation (2024) 
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It’s interesting to note that despite the entire interval showing a cluster 

pattern, when observing each year separately, we see that this pattern did not 

repeat in all years, such as in 2015, 2016, and 2019. Also, these years had 

48.48%, 41.15%, and 52.19% of data lost during geocoding. It is important to 

highlight that the two years which also had the lowest information loss during 

geocoding, in 2020 and 2021, presented a cluster distribution pattern. 

These annual assessments underscore the dynamic nature of tree fall 

incidents, with spatial patterns varying from complete spatial randomness to 

notable clustering, offering crucial insights for effective urban planning and risk 

management strategies. 

 

 
3.3. Regression Tree: 

3.3.1. Model I – All variables and all reports 

In the first model, the explanatory variables included the tree species, accumulated 

precipitation on the day, atmospheric pressure, maximum temperature, maximum wind 

gust, neighborhood age, and the region where the tree fell. When applying this algorithm, 

the most important variables were identified (Figure 8). These variables are the 

maximum wind gust, maximum temperature, atmospheric pressure, precipitation, 

species, neighborhood age, and the region. 

Figure 8: Variable Importance - Model I 
 

 
Source: Author's own creation (2024) 
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It is observed that the four main variables are meteorological variables related to 

weather events, highlighting the importance and role of climate in influencing these 

events. The rules of this first model can be seen in Table 4. 

Table 4: Rules of the Model I 
 

 
Source: Author’s own creation (2024) 

 
Some interesting observations can be noted in the model (Figure 9): trees that 

fell during windstorms did so on days with maximum wind gusts greater than 15 m/s, and 

the species was unidentified, representing 31% of the classified fallen trees during 

windstorms. Another case of trees falling during windstorms occurred on days with wind 

gusts greater than or equal to 15 m/s, atmospheric pressure greater than or equal to 949 

hPa, maximum temperature during the day between 30 ºC and 32 ºC, and the species 

was identified. 
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Figure 9: Regression Tree - Model I 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source: Author's own creation (2024) 

Analyzing the confusion matrix of this model (Table 5), we observe that 106 cases 

were correctly classified as "NO." There were no false positives, indicating that the model 

did not mistakenly classify instances of the "NO" class as "YES." One case was 

mistakenly classified as "NO" when it was actually "YES." Additionally, 190 cases were 

correctly classified as "YES." 

Table 5: Confusion Matrix - Model I 
 

Model I NO YES 

NO 106 0 

YES 1 190 

Source: Author's own creation (2024) 

In this context, the model demonstrates exceptional performance with a precision 

of 100% (Table 6). This means that all instances classified as "YES" by the model were 

indeed positive. The results suggest that the model is highly accurate and capable of 

efficiently identifying positive instances with minimal false negatives and no false 

positives. The values associated with the model's performance can be observed in the 

table below. These numbers support the claim of high precision of the model, highlighting 

its ability to correctly identify positive instances while minimizing both false positives and 

false negatives. 
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Table 6: Model's performance - Model I 
 

Test Values 

Recall 99.07% 

Accuracy 99.66% 

Specificity 100% 

Precision 100% 

Source: Author's own creation (2024) 

The findings of this regression tree model align with those observed in similar studies. 

For instance, the study “Factor Influencing Street Tree Hazard Condition in Rafaela, 

Argentina” (Castro, Alesso, Iaconis, Cerino, & Buyatti, 2019)highlights the significant 

influence of meteorological variables such as wind speed and temperature on tree falls. 

Similarly, the research “Climate drivers of tree fall on the streets of São Paulo, Brazil” 

(Locosselli, Miyahara, Cerqueira, & Buckeridge, 2021)emphasizes the critical role of 

maximum wind gusts and temperature in tree fall incidents, corroborating our results that 

identified maximum wind gust and temperature as primary factors. Additionally, the study 

“Average height of surrounding buildings and district age are the main predictors of tree 

failure on the streets of São Paulo, Brazil” (2022) mentions that urban characteristics like 

neighborhood age also play a crucial role, which is consistent with our finding that 

neighborhood age is an important variable in our model. 

These studies collectively reinforce the notion that both climatic conditions and urban 

infrastructure significantly affect the likelihood of tree falls. The consistency of our 

findings with those of other research works adds robustness to the conclusion that 

maximum wind gusts, temperature, and urban characteristics are pivotal factors in 

predicting tree falls during windstorms. Such insights are crucial for urban planning and 

risk mitigation strategies to prevent tree falls and enhance urban safety. 

3.3.2. Model II – Region 1 and Region 2 

This model considered only the trees that fell in regions 1 and 2 of the city, which are 

the regions with the highest incidence of fallen trees. The explanatory variables included 

in the model were the tree species, accumulated precipitation of the day, atmospheric 

pressure, maximum, minimum, and average temperatures, maximum wind gust, and 

average wind speed. When applying this algorithm, the following variables were 

identified as the most important (Figure 10): maximum wind gust, maximum temperature, 
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and average wind speed. In this model, we also observe that the main variables are 

related to the weather, particularly wind and temperature. 

Figure 10: Variable Importance - Model II 
 

 
In table 7 there are the rules of the model and in the figure 11 the decision tree based 

on the calculated model. 

Table 7: Rules of the Model II 

 

 
Source: Author's own creation (2024) 
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Figure 20: Regression Tree - Model II 

 

 
Source: Author's own creation (2024) 

 
When assessing the effectiveness of this model (Table 8), we observe the 

following: 58 cases were correctly classified as "NO", 68 cases were falsely classified as 

"YES" when they were actually "NO", 49 cases were falsely classified as "NO" when they 

were actually "YES", and 122 cases were correctly classified as "YES". 

Table 8: Confusion Matrix - Model II 

 
Model II NO YES 

NO 58 68 

YES 49 122 

Source: Author's own creation (2024) 

 
When analyzing the test results for Model II, we observe that the model's ability 

to correctly identify cases of fallen trees during storms, expressed by Recall, is 54.21%. 

This highlights the efficiency of the model in capturing a considerable portion of true 

positive cases. The Accuracy, reflecting the overall precision of predictions, stands at 

60.61%, indicating the percentage of correct predictions overall in both positive and 

negative classes. Specificity, assessing the model's precision in identifying cases where 

trees did not fall during storms, reaches 64%, emphasizing the accurate identification of 

cases without tree falls. Regarding Precision, examining the accuracy of positive 

predictions, we observe a value of 46.03%. This means that approximately 46% of 

positive predictions made by the model are correct among all positive predictions. 
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Table 9: Model's performance - Model II 
 

Test Values 

Recall 54.21% 

Accuracy 60.61% 

Specificity 64% 

Precision 46.03% 

Source: Author's own creation (2024) 

The performance of this model (Table 9) proved to be inferior to Model I; however, 

some highlights can be made. The maximum wind gust proved an important variable for 

both models, as did the maximum temperature, indicating that a wind gust above 15 m/s 

is a determining factor for tree falls during a windstorm. This finding is supported by the 

study “Climate drivers of tree fall on the streets of São Paulo, Brazil” (Castro, Alesso, 

Iaconis, Cerino, & Buyatti, 2019)which also identified wind gusts as a critical factor 

influencing tree falls. Furthermore, the relevance of average wind speed in our model 

aligns with the research “Factor Influencing Street Tree Hazard Condition in Rafaela, 

Argentina” (Locosselli, Miyahara, Cerqueira, & Buckeridge, 2021) where wind conditions 

significantly impacted tree stability. 

By comparing these results with those from previous studies, we reinforce the 

importance of climatic variables, particularly wind speed and temperature, in predicting 

tree falls. These insights can inform urban management and planning strategies to 

mitigate risks associated with tree falls in urban areas. 
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4. CONCLUSION 

This comprehensive analysis of tree fall incidents within the urban landscape has 

shed light on intriguing and evolving spatial patterns over the years. The identification of 

higher concentrations and risk of falls in the northern and northeastern regions of the city 

through kernel analysis is particularly noteworthy. 

The examination of 𝐾𝑖𝑛ℎ𝑜𝑚 and 𝐿𝑖𝑛ℎ𝑜𝑚 functions has revealed dynamic spatial 

patterns in the distribution of tree falls over the years. Notably, the transition from 

complete spatial randomness to clustering patterns, as observed in different years, 

emphasizes the dynamic nature of these incidents. The northern and northeastern 

regions consistently emerge as areas with higher risks of tree falls, providing crucial 

insights for targeted urban planning and risk management strategies. 

Furthermore, the prominence of the “Sibipiruna” species in tree falls emphasizes the 

need for species-specific management and mitigation efforts. The regression tree 

results, highlighting wind factors (maximum and average gusts), temperature, 

atmospheric pressure, and precipitation as significant contributors, offer valuable 

information for understanding the main factors influencing tree falls. 

In summary, this multifaceted analysis underscores the dynamic spatial dynamics of 

tree fall incidents. The shifting clustering tendencies, concentrations in specific regions, 

and the influence of various factors contribute to a comprehensive understanding. 

Importantly, the findings advocate for the standardization of data collection methods, 

suggesting the implementation of a protocol or application based on the study’s findings. 

Such a tool could serve as a valuable asset for the management and planning of urban 

forestry, ultimately fostering a safer and more resilient urban environment. 
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